在keras 中获取张量 tensor 的维度大小实例

在进行keras 网络计算时,有时候需要获取输入张量的维度来定义自己的层。但是由于keras是一个封闭的接口。因此在调用由于是张量不能直接用numpy 里的A.shape()。这样的形式来获取。这里需要调用一下keras 作为后端的方式来获取。当我们想要操作时第一时间就想到直接用 shape ()函数。其实keras 中真的有shape()这个函数。

shape(x)返回一个张量的符号shape,符号shape的意思是返回值本身也是一个tensor,

示例:

>>> from keras import backend as K
>>> tf_session = K.get_session()
>>> val = np.array([[1, 2], [3, 4]])
>>> kvar = K.variable(value=val)
>>> input = keras.backend.placeholder(shape=(2, 4, 5))
>>> K.shape(kvar)
<tf.Tensor 'Shape_8:0' shape=(2,) dtype=int32>
>>> K.shape(input)
<tf.Tensor 'Shape_9:0' shape=(3,) dtype=int32>
__To get integer shape (Instead, you can use K.int_shape(x))__

>>> K.shape(kvar).eval(session=tf_session)
array([2, 2], dtype=int32)
>>> K.shape(input).eval(session=tf_session)
array([2, 4, 5], dtype=int32)

如果直接调用这个出的不是我们想要的。我们想要的是tensor各个维度的大小。因此可以直接调用 int_shape(x) 函数。这个函数才是我们想要的。

>>> from keras import backend as K
>>> input = K.placeholder(shape=(2, 4, 5))
>>> K.int_shape(input)
(2, 4, 5)
>>> val = np.array([[1, 2], [3, 4]])
>>> kvar = K.variable(value=val)
>>> K.int_shape(kvar)
(2, 2)

最后这样我们就可以直接调用里面的大小。然后定义我们自己的keras 层了。

补充知识:获取Tensor的维度(x.shape和x.get_shape()的区别)

tf.shape(a)和a.get_shape()比较

相同点:都可以得到tensor a的尺寸

不同点:tf.shape()中a 数据的类型可以是tensor, list, array

a.get_shape()中a的数据类型只能是tensor,且返回的是一个元组(tuple)

import tensorflow as tf
import numpy as np 

x=tf.constant([[1,2,3],[4,5,6]])
y=[[1,2,3],[4,5,6]]
z=np.arange(24).reshape([2,3,4])

sess=tf.Session()
# tf.shape()
x_shape=tf.shape(x)          # x_shape 是一个tensor
y_shape=tf.shape(y)          # <tf.Tensor 'Shape_2:0' shape=(2,) dtype=int32>
z_shape=tf.shape(z)          # <tf.Tensor 'Shape_5:0' shape=(3,) dtype=int32>
print(sess.run(x_shape))       # 结果:[2 3]
print(sess.run(y_shape))       # 结果:[2 3]
print(sess.run(z_shape) )       # 结果:[2 3 4]

x_shape=x.get_shape()
print(x_shape)    # 返回的是TensorShape([Dimension(2), Dimension(3)]),不能使用 sess.run() 因为返回的不是tensor 或string,而是元组                            (2, 3)
x_shape=x.get_shape().as_list()
print(x_shape) # 可以使用 as_list()得到具体的尺寸,x_shape=[2 3] 这是重点 返回列表方便参加其他代码的运算
# y_shape=y.get_shape()
print(x_shape)# AttributeError: 'list' object has no attribute 'get_shape'
# z_shape=z.get_shape()
print(x_shape)# AttributeError: 'numpy.ndarray' object has no attribute 'get_shape' 或者a.shape.as_list()

以上这篇在keras 中获取张量 tensor 的维度大小实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • PyTorch中Tensor的拼接与拆分的实现

    拼接张量:torch.cat() .torch.stack() torch.cat(inputs, dimension=0) → Tensor 在给定维度上对输入的张量序列 seq 进行连接操作 举个例子: >>> import torch >>> x = torch.randn(2, 3) >>> x tensor([[-0.1997, -0.6900, 0.7039], [ 0.0268, -1.0140, -2.9764]]) >>&

  • PyTorch中Tensor的维度变换实现

    对于 PyTorch 的基本数据对象 Tensor (张量),在处理问题时,需要经常改变数据的维度,以便于后期的计算和进一步处理,本文旨在列举一些维度变换的方法并举例,方便大家查看. 维度查看:torch.Tensor.size() 查看当前 tensor 的维度 举个例子: >>> import torch >>> a = torch.Tensor([[[1, 2], [3, 4], [5, 6]]]) >>> a.size() torch.Size

  • pytorch实现Tensor变量之间的转换

    系统默认是torch.FloatTensor类型 data = torch.Tensor(2,3)是一个2*3的张量,类型为FloatTensor data.cuda()就转换为GPU的张量类型,torch.cuda.FloatTensor类型 (1) CPU或GPU之间的张量转换 在Tensor后加long(), int(), double(),float(),byte()等函数就能将Tensor进行类型转换type()函数, data为Tensor数据类型,data.type()为给出dat

  • 在TensorFlow中实现矩阵维度扩展

    一般TensorFlow中扩展维度可以使用tf.expand_dims().近来发现另一种可以直接运用取数据操作符[]就能扩展维度的方法. 用法很简单,在要扩展的维度上加上tf.newaxis就行了. foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]]) print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]] print(foo[:, tf.newaxis, :].eva

  • 在keras 中获取张量 tensor 的维度大小实例

    在进行keras 网络计算时,有时候需要获取输入张量的维度来定义自己的层.但是由于keras是一个封闭的接口.因此在调用由于是张量不能直接用numpy 里的A.shape().这样的形式来获取.这里需要调用一下keras 作为后端的方式来获取.当我们想要操作时第一时间就想到直接用 shape ()函数.其实keras 中真的有shape()这个函数. shape(x)返回一个张量的符号shape,符号shape的意思是返回值本身也是一个tensor, 示例: >>> from keras

  • Tensorflow获取张量Tensor的具体维数实例

    获取Tensor的维数 >>> import tensorflow as tf >>> tf.__version__ '1.2.0-rc1' >>> x=tf.placeholder(dtype=float32,shape=[1,2,3,4]) >>> x=tf.placeholder(dtype=tf.float32,shape=[1,2,3,4]) >>> x.shape TensorShape([Dimensi

  • 在keras中获取某一层上的feature map实例

    在深度学习中,如果我们想获得某一个层上的feature map,就像下面的图这样,怎么做呢? 我们的代码是使用keras写的VGG16网络,网络结构如图: 那么我们随便抽取一层的数据吧,就拿第四层的pooling以后的结果作为输出吧,参考上面的网络结构,得到的结果维度应该是[1,56,56,128]的尺度. 怎么做呢? 首先通过keras构建模型: model = VGG16(include_top=True, weights='imagenet') 然后设置输入和输出为:原始的输入和该层对应的

  • JS中获取 DOM 元素的绝对位置实例详解

    在操作页面滚动和动画时经常会获取 DOM 元素的绝对位置,例如 本文 左侧的悬浮导航,当页面滚动到它以前会正常地渲染到文档流中,当页面滚动超过了它的位置,就会始终悬浮在左侧. 本文会详述各种获取 DOM 元素绝对位置 的方法以及对应的兼容性.关于如何获取 DOM 元素高度和滚动高度,请参考视口的宽高与滚动高度 一文. 概述 这些是本文涉及的 API 对应的文档和标准,供查阅: API 用途 文档 标准 offsetTop 相对定位容器的位置 MDN CSSOM View Module clien

  • 在Keras中利用np.random.shuffle()打乱数据集实例

    我就废话不多说了,大家还是直接看代码吧~ from numpy as np index=np.arange(2000) np.random.shuffle(index) print(index[0:20]) X_train=X_train[index,:,:,:]#X_train是训练集,y_train是训练标签 y_train=y_train[index] 补充知识:Keras中shuffle和validation_split的顺序 模型的fit函数有两个参数,shuffle用于将数据打乱,v

  • HTML中使背景图片自适应浏览器大小实例详解

    HTML中使背景图片自适应浏览器大小实例详解 解决办法: 1.图片不够大,又background属性不能拉伸图片: 2.只能用个div,把其z-index值设为负,并使这个div大小为整个body大小,在div里用<img> : 3.body的background属性去掉,要不然会被遮住. <html> <body> <div id="Layer1" style="position:absolute; left:0px; top:0p

  • 在matplotlib中改变figure的布局和大小实例

    以下来自Stack Overflow 从上面我们可以很清晰的看出应该如何使用matplotlib的figure方法. 补充知识:matplotlib 设置图形大小时 figsize 与 dpi 的关系 matplotlib 中设置图形大小的语句如下: fig = plt.figure(figsize=(a, b), dpi=dpi) 其中: figsize 设置图形的大小,a 为图形的宽, b 为图形的高,单位为英寸 dpi 为设置图形每英寸的点数 则此时图形的像素为: px, py = a*d

  • Java中获取文件大小的详解及实例代码

     Java 获取文件大小 今天写代码时需要实现获取文件大小的功能,目前有两种实现方法,一种是使用File的length()方法:另外一种是使用FileInputStream的available()方法,当InputStream未进行read操作时,available()的大小应该是等于文件大小的.但是在处理大文件时,后者会发生问题.我们来看一下: 在例子中,我使用了CentOS 6.5 的安装镜像文件,主要是考虑到这个文件足够大(大于2GB). 1.使用File的length()方法 publi

  • 解决Keras中CNN输入维度报错问题

    想要写分类器对图片进行分类,用到了CNN.然而,在运行程序时,一直报错: ValueError: Negative dimension size caused by subtracting 5 from 1 for 'conv2d_1/convolution' (op: 'Conv2D') with input shapes: [?,1,28,28], [5,5,28,30]. 这部分提到的代码是这样的,这是我的分类器的输入层: model.add(Conv2D(30,(5, 5), input

随机推荐