python中GIL的原理及用法总结

1、说明

GIL规定一个Python解释程序只能同时由一个线程控制。

在CPU限制类型和多线程代码中,GIL是一个性能瓶颈。

GIL使Python多线程成为伪并行多线程。

仅CPython解释器上存在GIL。

2、原理

(1)线程1、2、3轮流执行,每一个线程在执行是,都会锁住GIL,以阻止别的线程执行;

同样的,每一个线程执行一段后,会释放GIL,以允许别的线程开始利用资源。

(2)由于古老GIL机制,如果线程2需要在CPU2上执行,它需要先等待在CPU1上执行的线程1释放GIL(记住:GIL是全局的)

(3)如果线程1是因为 i/o 阻塞让出的GIL,那么线程2必定拿到GIL。但如果线程1是因为timer ticks计数满100ticks(大概对应了1000个bytecodes)让出GIL,那么这个时候线程1和线程2公平竞争。

(4)但要命的是,在Python 2.x, 线程1不会动态的调整自身的优先级,所以很大概率下次被选中执行的还是线程1,在很多个这样的选举周期内,线程2只能安静的看着线程1拿着GIL在CPU 1上欢快的执行。

(5)极端一点的情况下,比如线程1使用了while True在CPU1上执行,那就真是“一核有难,八核围观”了。

知识点扩展:

GIL设计理念与限制

python的代码执行由python虚拟机(也叫解释器主循环,CPython版本)来控制,python在设计之初就考虑到在解释器的主循环中,同时只有一个线程在运行。即在任意时刻只有一个线程在解释器中运行。对python虚拟机访问的控制由全局解释锁GIL控制,正是这个锁来控制同一时刻只有一个线程能够运行。

在调用外部代码(如C、C++扩展函数)的时候,GIL将会被锁定,直到这个函数结束为止(由于期间没有python的字节码运行,所以不会做线程切换)。

在python中使用都是操作系统级别的线程,linux中使用的pthread,window使用的是其原生线程。

从上面的概述中可以直观的看出py在同一时刻只能跑一个线程,这样在跑多线程的情况下,只有当线程获取到全局解释器锁后才能运行,而全局解释器锁只有一个,因此即使在多核的情况下也只能发挥出单核的功能。

那么这样看起来py不给力啊,GIL直接导致CPython不能利用物理多核的性能加速运行。那么为什么会有这样的设计?考虑到Guido van Rossum 在创造python的时候,上世纪90年代,多核cpu完全属于不可想象的,现在由于硬件发展速度太快,程序编写就要考虑用尽cpu的全部性能,否则就要被淘汰,那么对于python同样也要如此。

上面主要说的是这种设计的劣势,下面再讨论它的优势。

GIL的设计简化了CPython的实现,使得对象模型,包括关键的内建类型如字典,都隐式可以并发访问。锁住全局解释器使得其比较容易的实现对多线程的支持,但也折损了多处理器主机的并行计算能力。

但是不论标准的,还是第三方的扩展模块,都被设计成在进行密集计算任务时释放GIL。另外还有在做IO操作时,GIL总是被释放。对所有面对内建的操作系统C代码的程序来说,GIL会在这个IO调用之前被释放,以允许其它的线程在等待这个IO的时候运行。如果是纯计算的程序,没有IO操作,解释器会每隔100次或每隔一定时间15ms去释放GIL。

这里可以理解为IO密集型的python比计算密集型的程序更能利用多线程环境带来的便利。

到此这篇关于python中GIL的原理及用法总结的文章就介绍到这了,更多相关python中GIL的原理内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python Threading 线程/互斥锁/死锁/GIL锁

    导入线程包 import threading 准备函数线程,传参数 t1 = threading.Thread(target=func,args=(args,)) 类继承线程,创建线程对象 class MyThread(threading.Thread) def run(self): pass if __name__ == "__main__": t = MyThread() t.start() 线程共享全面变量,但在共享全局变量时会出现数据错误问题 使用 threading 模块中的

  • python3爬虫GIL修改多线程实例讲解

    我们打开程序后,会发现电脑的内存和cpu发生了变化.在对于前者上面,自然是希望内容占用小,cpu的利用越高越好.那有没有什么方法可以让我们的cpu达到满状态的运行效果呢?这就得用到我们所学的多线程中的知识了,再正式开始讲解之前,我们先来说说操作的思路吧,然后进行代码对比. 我们都知道,比方我有一个4核的CPU,那么这样一来,在单位时间内每个核只能跑一个线程,然后时间片轮转切换.但是Python不一样,它不管你有几个核,单位时间多个核只能跑一个线程,然后时间片轮转.看起来很不可思议?但是这就是GI

  • 深入学习python多线程与GIL

    python 多线程效率 在一台8核的CentOS上,用python 2.7.6程序执行一段CPU密集型的程序. import time def fun(n):#CPU密集型的程序 while(n>0): n -= 1 start_time = time.time() fun(10000000) print('{} s'.format(time.time() - start_time))#测量程序执行时间 测量三次程序的执行时间,平均时间为0.968370994秒.这就是一个线程执行一次fun(

  • 详解Python中的GIL(全局解释器锁)详解及解决GIL的几种方案

    先看一道GIL面试题: 描述Python GIL的概念, 以及它对python多线程的影响?编写一个多线程抓取网页的程序,并阐明多线程抓取程序是否可比单线程性能有提升,并解释原因. GIL:又叫全局解释器锁,每个线程在执行的过程中都需要先获取GIL,保证同一时刻只有一个线程在运行,目的是解决多线程同时竞争程序中的全局变量而出现的线程安全问题.它并不是python语言的特性,仅仅是由于历史的原因在CPython解释器中难以移除,因为python语言运行环境大部分默认在CPython解释器中. 通过

  • Cpython解释器中的GIL全局解释器锁

    1.什么是GIL全局解释器锁 GIL:Global Interpreter Lock,意思就是全局解释器锁,这个GIL并不是Python的特性,他是只在Cpython解释器里引入的一个概念,而在其他的语言编写的解释器里就没有GIL,例如:Jython,Pypy等 下面是官方给出的解释: In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from exe

  • 线程安全及Python中的GIL原理分析

    本文讲述了线程安全及Python中的GIL.分享给大家供大家参考,具体如下: 摘要 什么是线程安全? 为什么python会使用GIL的机制? 在多核时代的到来的背景下,基于多线程来充分利用硬件的编程方法也不断发展起来, 但是一旦 牵扯到多线程,就必然会涉及到一个概念,即 线程安全, 本文就主要谈下笔者对线程安全的一些理解. 而Python为很多人所抱怨的一点就是GIL,那么python为什么选择使用GIL, 本文也就这个问题进行一些讨论. 引入 你的PC或者笔记本还是单核吗? 如果是,那你已经o

  • 浅谈Python中的全局锁(GIL)问题

    CPU-bound(计算密集型) 和I/O bound(I/O密集型) 计算密集型任务(CPU-bound) 的特点是要进行大量的计算,占据着主要的任务,消耗CPU资源,一直处于满负荷状态.比如复杂的加减乘除.计算圆周率.对视频进行高清解码等等,全靠CPU的运算能力.这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数. 计算密集型任务由于主要消耗CPU资源,因

  • 一篇文章快速了解Python的GIL

    前言:博主在刚接触Python的时候时常听到GIL这个词,并且发现这个词经常和Python无法高效的实现多线程划上等号.本着不光要知其然,还要知其所以然的研究态度,博主搜集了各方面的资料,花了一周内几个小时的闲暇时间深入理解了下GIL,并归纳成此文,也希望读者能通过次本文更好且客观的理解GIL. GIL是什么 首先需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念.就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执

  • python中GIL的原理及用法总结

    1.说明 GIL规定一个Python解释程序只能同时由一个线程控制. 在CPU限制类型和多线程代码中,GIL是一个性能瓶颈. GIL使Python多线程成为伪并行多线程. 仅CPython解释器上存在GIL. 2.原理 (1)线程1.2.3轮流执行,每一个线程在执行是,都会锁住GIL,以阻止别的线程执行: 同样的,每一个线程执行一段后,会释放GIL,以允许别的线程开始利用资源. (2)由于古老GIL机制,如果线程2需要在CPU2上执行,它需要先等待在CPU1上执行的线程1释放GIL(记住:GIL

  • Python中threading模块join函数用法实例分析

    本文实例讲述了Python中threading模块join函数用法.分享给大家供大家参考.具体分析如下: join的作用是众所周知的,阻塞进程直到线程执行完毕.通用的做法是我们启动一批线程,最后join这些线程结束,例如: for i in range(10): t = ThreadTest(i) thread_arr.append(t) for i in range(10): thread_arr[i].start() for i in range(10): thread_arr[i].joi

  • Python函数装饰器原理与用法详解

    本文实例讲述了Python函数装饰器原理与用法.分享给大家供大家参考,具体如下: 装饰器本质上是一个函数,该函数用来处理其他函数,它可以让其他函数在不需要修改代码的前提下增加额外的功能,装饰器的返回值也是一个函数对象.它经常用于有切面需求的场景,比如:插入日志.性能测试.事务处理.缓存.权限校验等应用场景.装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用.概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能. 严格来说,装饰器只是语法糖,

  • Python自定义装饰器原理与用法实例分析

    本文实例讲述了Python自定义装饰器原理与用法.分享给大家供大家参考,具体如下: 什么是装饰器?装饰器本质是一个函数,它可以在不改变原来的函数的基础上额外的增加一些功能.如常见的@classmethod,@staticmethod等都是装饰器,接下来记录下如何自定义个装饰器: 刚刚说过了,装饰器的本质就是一个函数,所有想要自定义一个装饰器,首先自定义一个函数 def decorate(func): def wrapper(*args,**kwargs): print("定义一个装饰器"

  • Python中xrange与yield的用法实例分析

    本文实例分析了Python中xrange与yield的用法.分享给大家供大家参考,具体如下: range和xrange Python提供了生成和返回整数序列的内置函数range及xrange,虽然这两个函数在功能上是差不多的,但其实现原理还是有差别的.range(n, m)返回的是一个从n到(m-1)的连续的整数列表,而xrange(n, m)返回的却是一个特殊的目的对象,即xrange对象本身. >>> range(1, 5) [1, 2, 3, 4] >>> xra

  • python 协程 gevent原理与用法分析

    本文实例讲述了python 协程 gevent原理与用法.分享给大家供大家参考,具体如下: gevent greenlet已经实现了协程,但是这个还的人工切换,是不是觉得太麻烦了,不要捉急,python还有一个比greenlet更强大的并且能够自动切换任务的模块gevent 其原理是当一个greenlet遇到IO(指的是input output 输入输出,比如网络.文件操作等)操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行. 由于IO操

  • Python面向对象之多态原理与用法案例分析

    本文实例讲述了Python面向对象之多态原理与用法.分享给大家供大家参考,具体如下: 目标 多态 面向对象三大特性 封装 根据 职责 将 属性 和 方法 封装 到一个抽象的 类 中 定义类的准则 继承 实现代码的重用,相同的代码不需要重复的编写 设计类的技巧 子类针对自己特有的需求,编写特定的代码 多态 不同的 子类对象 调用相同的 父类方法,产生不同的执行结果 多态 可以 增加代码的灵活度 以 继承 和 重写父类方法 为前提 是调用方法的技巧,不会影响到类的内部设计 多态案例演练 需求 1.在

  • Python面向对象之继承原理与用法案例分析

    本文实例讲述了Python面向对象之继承原理与用法.分享给大家供大家参考,具体如下: 目标 单继承 多继承 面向对象三大特性 封装 根据 职责 将 属性 和 方法 封装 到一个抽象的 类 中 继承 实现代码的重用,相同的代码不需要重复的编写 多态 不同的对象调用相同的方法,产生不同的执行结果,增加代码的灵活度 01. 单继承 1.1 继承的概念.语法和特点 继承的概念:子类 拥有 父类 的所有 方法 和 属性 继承的语法 class 类名(父类名): pass 子类 继承自 父类,可以直接 享受

  • Python中sys模块功能与用法实例详解

    本文实例讲述了Python中sys模块功能与用法.分享给大家供大家参考,具体如下: sys-系统特定的参数和功能 该模块提供对解释器使用或维护的一些变量的访问,以及与解释器强烈交互的函数.它始终可用. sys.argv 传递给Python脚本的命令行参数列表.argv[0]是脚本名称(依赖于操作系统,无论这是否是完整路径名).如果使用-c解释器的命令行选项执行命令,argv[0]则将其设置为字符串'-c'.如果没有脚本名称传递给Python解释器,argv[0]则为空字符串. 要循环标准输入或命

  • python with语句的原理与用法详解

    本文实例讲述了python with语句的原理与用法.分享给大家供大家参考,具体如下: 之前看到一篇博客说博主python面试时遇到面试官提问with的原理,而那位博主的博文没有提及with原理,故有此文. 关于with语句,官方文档中是这样描述的: The with statement is used to wrap the execution of a block with methods defined by a context manager (see section With Stat

随机推荐