Python+OpenCV实现基本的图像处理操作

目录
  • 模块的安装
  • 图片的各种操作
    • 读取图像
    • 展示图像
    • 图片保存
  • 图片的各种属性
  • 图像的基本操作

今天小编来和大家分享一下Python在图像处理当中的具体应用,那既然是图像处理,那必然要提到opencv模块了,该模块支持与计算机视觉和机器学习相关的众多算法,并且应用领域正在日益扩展,大致有以下几种领域

  • 物体识别:通过视觉以及内部存储来进行物体的判断
  • 图像分割
  • 人脸识别
  • 汽车安全驾驶
  • 人机交互
  • 等等

当然这次小编并不打算将这么高深的内容,今天就从最基本的opencv模块在图像的基本操作上说起

模块的安装

模块的安装我们通过都是通过pip命令来进行的

pip install opencv-python
pip install opencv-contrib-python

图片的各种操作

学过线性代数的肯定怼矩阵并不感到陌生。图像本质上来说就是矩阵,灰度图像是一个普通的矩阵,而彩色图像就是一个多维矩阵,我们对于图像的操作可以自然地转换成是对矩阵的操作

读取图像

首先我们先来读取图像,调用的是cv2.imread()方法,它的语法格式如下

cv2.imread(filename, flag=1)

其中的flag参数是用来设置读取图像的格式,默认的是1,表示为按照RGB三通道的格式来进行读取,如果设置成0,则表示以灰度图单通道的方式来进行读取,

import cv2
import numpy as np
img=cv2.imread('1.jpg', 0)

展示图像

cv2.imshow(name, img)

其参数解释分别如下:

  • name: 表示的是展示窗口的名字
  • img: 图片的矩阵形式

我们尝试将上面读取的图片展示出来,代码如下

cv2.imshow("grey_img", img)
## 如果使用了cv2.imshow()函数,下面一定要跟着一个摧毁窗口的函数
cv2.destroyAllWindows()

当我们运行了上述的代码之后,可以发现在一瞬间当中图片弹了出来,但是还没有等我们看清楚图片的样子之后就直接关闭了,原因在于cv2.imshow()函数方法并没有延时的作用,我们添加一个延时的函数,代码如下

import cv2
import numpy as np

img = cv2.imread('1.jpg')
cv2.imshow("grey_img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

output

图片保存

最后我们将图片保存下来,这里用到的函数是cv2.imwrite(),它的语法格式如下

cv2.imwrite(imgname, img)

其参数解释分别如下:

  • imgname: 要保存的图片的名字
  • img: 图片的矩阵形式

示例代码如下

import cv2
import numpy as np

img = cv2.imread('1.jpg')
cv2.imshow("grey_img", img)
cv2.waitKey(0)
cv2.imwrite('1.png', img)
cv2.destroyAllWindows()

图片的各种属性

有时候我们想要知道图片的像素大小,而图片的本质是矩阵,例如一张1024像素*960像素的图片,就意味着在矩阵当中的行数就是960行,列数是1024列,在opencv模块当中调用的shape()函数方法,代码如下

import cv2

img = cv2.imread('1.jpg')
print(img.shape[0]) # 行数
print(img.shape[1]) # 列数
print(img.shape[2]) # 通道数

output

308
340
3

可以看到该图片的像素是340*380,通道数是3,而针对灰度图像而言,我们来看一下图片的属性,代码如下

img = cv2.imread('1_grey.png', 0)
print(img.shape)

output

(308, 340)

可以看到对于灰度图像而言,我们就没有看到通道数,只有行数和列数

图像的基本操作

最后我们来对图像进行一些基本操作,无非就是改变当中的一些像素值,我们导入一张空白的图片,通过修改当中的像素值来往里面添加一个黑点,代码如下

import cv2
import numpy as np

img = cv2.imread('2.jpg')
(x, y, z) = img.shape

for i in range(-10, 10):
    for j in range(-10, 10):
        # 图片的正中心的位置来改变像素值,
        img[int(x/2) + i, int(y/2) + j] = (0, 0, 0)

cv2.imshow("img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

output

到此这篇关于Python+OpenCV实现基本的图像处理操作的文章就介绍到这了,更多相关Python OpenCV图像处理内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python opencv图像处理基本操作示例详解

    目录 1.图像基本操作 ①读取图像 ②显示图像 ③视频读取 ④图像截取 ⑤颜色通道提取及还原 ⑥边界填充 ⑦数值计算 ⑧图像融合 2.阈值与平滑处理 ①设定阈值并对图像处理 ②图像平滑-均值滤波 ③图像平滑-方框滤波 ④图像平滑-高斯滤波 ⑤图像平滑-中值滤波 3.图像的形态学处理 ①腐蚀操作 ②膨胀操作 ③开运算和闭运算 4.图像梯度处理 ①梯度运算 ②礼帽与黑帽 ③图像的梯度处理 5.边缘检测 ①Canny边缘检测 1.图像基本操作 ①读取图像 ②显示图像 该函数中,name是显示窗口的名字

  • Python+OpenCV六种实时图像处理详细讲解

    目录 1.导入库文件 2.设计GUI 3.调用摄像头 4.实时图像处理 4.1.阈值二值化 4.2.边缘检测 4.3.轮廓检测 4.4.高斯滤波 4.5.色彩转换 4.6.调节对比度 5.退出系统 初学OpenCV图像处理的小伙伴肯定对什么高斯函数.滤波处理.阈值二值化等特性非常头疼,这里给各位分享一个小项目,可通过摄像头实时动态查看各类图像处理的特点,也可对各位调参.测试有一定帮助. 1.导入库文件 这里主要使用PySimpleGUI.cv2和numpy库文件,PySimpleGUI库文件实现

  • opencv-python图像处理安装与基本操作方法

    目录 一.安装opencv 二. opencv使用 一.安装opencv 关于opencv的安装,如果是windows系统下使用pycharm,那么直接在在终端使用pip命令或者点击设置-python解释器输入opencv-python即可 如果使用的是conda,那也可以使用pip命令或者conda install 安装在linux下的话更加简单.而且也会少很多无缘无故的bug,推荐使用linux系统.linux下使用终端输入pip或者pip3 install opencv-python即可,

  • Python Opencv图像处理基本操作代码详解

    1.图像读取 使用cv2.imread(filepath,flags)读入图像 filepath: 读入图像完整路径(绝对路径,相对路径) flags: 读入图像标志 cv2.IMREAD_COLOR:默认参数,读入一副彩色图,忽略alpha通道:可以通过1指定 cv2.IMREAD_GRAYSCALE:读入灰度图片 也通过0指定 cv2.IMREAD_UNCHANGED:读入完整图片,包括alpha通道 import cv2 img1 = cv2.imread('C:/star.png',1)

  • opencv-python基本图像处理详解

    目录 一.使用matplotlib显示图 1.显示热量图 2.显示灰度图 二.使用cv.imread显示图像 1.显示灰度图像 总结 一.使用matplotlib显示图 import matplotlib.pyplot as plt #plt用于显示图片 import matplotlib.image as mping #mping用于读取图片 import numpy as np lena=mping.imread('1.jpg') #读取和代码同一目录下的图片 #此时lena就已经是一个np

  • 深入学习Python+Opencv常用四种图像处理操作

    目录 改变色彩空间: cv.cvtColor() 改变图像大小:cv.resize() 二维卷积操作 常用模糊 opencv图像处理(深度学习中常用的) 改变色彩空间: cv.cvtColor() cv.cvtColor(img, flag) img:原图像 flag:要改变的类型 常用的flag有:cv.COLOR_BGR2GRAY (BGR->GRAY).cv.COLOR_BGR2HSV img = cv.imread(r'E:\0_postgraduate\test.jpg') gray

  • Python+OpenCV实现基本的图像处理操作

    目录 模块的安装 图片的各种操作 读取图像 展示图像 图片保存 图片的各种属性 图像的基本操作 今天小编来和大家分享一下Python在图像处理当中的具体应用,那既然是图像处理,那必然要提到opencv模块了,该模块支持与计算机视觉和机器学习相关的众多算法,并且应用领域正在日益扩展,大致有以下几种领域 物体识别:通过视觉以及内部存储来进行物体的判断 图像分割 人脸识别 汽车安全驾驶 人机交互 等等 当然这次小编并不打算将这么高深的内容,今天就从最基本的opencv模块在图像的基本操作上说起 模块的

  • 详解Python+OpenCV进行基础的图像操作

    目录 介绍 形态变换 腐蚀 膨胀 创建边框 强度变换 对数变换 线性变换 去噪彩色图像 使用直方图分析图像 介绍 众所周知,OpenCV是一个用于计算机视觉和图像操作的免费开源库. OpenCV 是用 C++ 编写的,并且有数千种优化的算法和函数用于各种图像操作.很多现实生活中的操作都可以使用 OpenCV 来解决.例如视频和图像分析.实时计算机视觉.对象检测.镜头分析等. 许多公司.研究人员和开发人员为 OpenCV 的创建做出了贡献.使用OpenCV 很简单,而且 OpenCV 配备了许多工

  • Python基于Tensor FLow的图像处理操作详解

    本文实例讲述了Python基于Tensor FLow的图像处理操作.分享给大家供大家参考,具体如下: 在对图像进行深度学习时,有时可能图片的数量不足,或者希望网络进行更多的学习,这时可以对现有的图片数据进行处理使其变成一张新的图片,在此基础上进行学习,从而提高网络识别的准确率. 1.图像解码显示 利用matplot库可以方便简洁地在jupyter内对图片进行绘制与输出,首先通过tf.gfile打开图片文件,并利用函数tf.image.decode_jpeg将jpeg图片解码为三位矩阵,之后便可以

  • Python OpenCV 针对图像细节的不同操作技巧

    本系列专栏写作将采用首创的问答式写作形式,快速让你学习到 OpenCV 的初级.中级.高级知识. 6. 在 Python OpenCV 针对图像细节的不同操作 本篇博客的目标将为你解释一幅图像的拆解,包括图像像素的说明,图像属性信息的获取与修改, 图像目标区域 ROI 相关内容,以及图像通道的知识(包括拆分通道和合并通道) 这些内容在知识结构上与 numpy 库十分紧密,如果从学习的角度出发,建议你储备一下 numpy 相关知识. 读取修改图像的像素值 在之前的博客中,我们已经学到了如何读取一幅

  • Python OpenCV对图像像素进行操作

    目录 遍历并修改图像像素值 图像的加减乘除运算 遍历并修改图像像素值 在使用opencv处理图像时,有时需要对图像的每个像素点进行处理,比如取反.修改值等操作,就需要通过h和w遍历像素.依然以下图为例: 具体代码: import cv2 as cv import numpy as np def image_pixel(image_path: str): img = cv.imread(image_path, cv.IMREAD_COLOR) cv.imshow('input', img) h,

  • Python opencv应用实现图片切分操作示例

    目录 说明 操作说明 代码 切换效果 说明 之前下载来zip包的漫画,里面的图片都是两张一起的: 但是某些漫画查看软件不支持自动分屏,看起来会比较不舒服,所以只能自己动手来切分. 操作说明 Python有不少的库支持图片操作,其中比较著名的一个是OpenCV. OpenCV是一个跨平台的计算机视觉库,Python下有它的接口实现. Python默认不带OpenCV,所以需要先用pip下载: OpenCV功能强大,这里用来做图片的切分其实是牛刀小试. 关于OpenCV的功能,这里不多介绍,有兴趣的

  • opencv python简易文档之图像处理算法

    目录 将图片转为灰度图 HSV 图像阈值 图像平滑 形态学-腐蚀操作 形态学-膨胀操作 开运算与闭运算 梯度运算 礼帽与黑帽 图像梯度处理 Canny边缘检测 图像金字塔 图像轮廓 直方图 直方图均衡化: 自适应均衡化: 傅里叶变换 模板匹配 总结 上一篇已经给大家介绍了opencv python图片基本操作的相关内容,这里继续介绍图像处理算法,下面来一起看看吧 将图片转为灰度图 import cv2 #opencv读取的格式是BGR img=cv2.imread('cat.jpg') # 将图

随机推荐