jvm垃圾回收GC调优基础原理分析

目录
  • 核心概念(Core Concepts)
    • Latency(延迟)
    • Throughput(吞吐量)
    • Capacity(系统容量)
  • 相关示例
    • Tuning for Latency(调优延迟指标)
    • Tuning for Throughput(吞吐量调优)
    • Tuning for Capacity(调优系统容量)

说明:

Capacity: 性能,能力,系统容量; 文中翻译为”系统容量“; 意为硬件配置。

GC调优(Tuning Garbage Collection)和其他性能调优是同样的原理。初学者可能会被 200 多个 GC参数弄得一头雾水, 然后随便调整几个来试试结果,又或者修改几行代码来测试。其实只要参照下面的步骤,就能保证你的调优方向正确:

  • 列出性能调优指标(State your performance goals)
  • 执行测试(Run tests)
  • 检查结果(Measure the results)
  • 与目标进行对比(Compare the results with the goals)
  • 如果达不到指标, 修改配置参数, 然后继续测试(go back to running tests)

第一步, 我们需要做的事情就是: 制定明确的GC性能指标。对所有性能监控和管理来说, 有三个维度是通用的:

  • Latency(延迟)
  • Throughput(吞吐量)
  • Capacity(系统容量)

我们先讲解基本概念,然后再演示如何使用这些指标。如果您对 延迟、吞吐量和系统容量等概念很熟悉, 可以跳过这一小节。

核心概念(Core Concepts)

我们先来看一家工厂的装配流水线。工人在流水线将现成的组件按顺序拼接,组装成自行车。通过实地观测, 我们发现从组件进入生产线,到另一端组装成自行车需要4小时。

继续观察,我们还发现,此后每分钟就有1辆自行车完成组装, 每天24小时,一直如此。将这个模型简化, 并忽略维护窗口期后得出结论: 这条流水线每小时可以组装60辆自行车。

说明: 时间窗口/窗口期,请类比车站卖票的窗口,是一段规定/限定做某件事的时间段。

通过这两种测量方法, 就知道了生产线的相关性能信息: 延迟与吞吐量:

  • 生产线的延迟: 4小时
  • 生产线的吞吐量: 60辆/小时

请注意, 衡量延迟的时间单位根据具体需要而确定 —— 从纳秒(nanosecond)到几千年(millennia)都有可能。系统的吞吐量是每个单位时间内完成的操作。操作(Operations)一般是特定系统相关的东西。在本例中,选择的时间单位是小时, 操作就是对自行车的组装。

掌握了延迟和吞吐量两个概念之后, 让我们对这个工厂来进行实际的调优。自行车的需求在一段时间内都很稳定, 生产线组装自行车有四个小时延迟, 而吞吐量在几个月以来都很稳定: 60辆/小时。假设某个销售团队突然业绩暴涨, 对自行车的需求增加了1倍。客户每天需要的自行车不再是 60 24 = 1440辆, 而是 21440 = 2880辆/天。老板对工厂的产能不满意,想要做些调整以提升产能。

看起来总经理很容易得出正确的判断, 系统的延迟没法子进行处理 —— 他关注的是每天的自行车生产总量。得出这个结论以后, 假若工厂资金充足, 那么应该立即采取措施, 改善吞吐量以增加产能。

我们很快会看到, 这家工厂有两条相同的生产线。每条生产线一分钟可以组装一辆成品自行车。 可以想象,每天生产的自行车数量会增加一倍。达到 2880辆/天。要注意的是, 不需要减少自行车的装配时间 —— 从开始到结束依然需要 4 小时。

巧合的是,这样进行的性能优化,同时增加了吞吐量和产能。一般来说,我们会先测量当前的系统性能, 再设定新目标, 只优化系统的某个方面来满足性能指标。

在这里做了一个很重要的决定 —— 要增加吞吐量,而不是减小延迟。在增加吞吐量的同时, 也需要增加系统容量。比起原来的情况, 现在需要两条流水线来生产出所需的自行车。在这种情况下, 增加系统的吞吐量并不是免费的, 需要水平扩展, 以满足增加的吞吐量需求。

在处理性能问题时, 应该考虑到还有另一种看似不相关的解决办法。假如生产线的延迟从1分钟降低为30秒,那么吞吐量同样可以增长 1 倍。

或者是降低延迟, 或者是客户非常有钱。软件工程里有一种相似的说法 —— 每个性能问题背后,总有两种不同的解决办法。 可以用更多的机器, 或者是花精力来改善性能低下的代码。

Latency(延迟)

GC的延迟指标由一般的延迟需求决定。延迟指标通常如下所述:

  • 所有交易必须在10秒内得到响应
  • 90%的订单付款操作必须在3秒以内处理完成
  • 推荐商品必须在 100 ms 内展示到用户面前

面对这类性能指标时, 需要确保在交易过程中, GC暂停不能占用太多时间,否则就满足不了指标。“不能占用太多” 的意思需要视具体情况而定, 还要考虑到其他因素, 比如外部数据源的交互时间(round-trips), 锁竞争(lock contention), 以及其他的安全点等等。

假设性能需求为: 90%的交易要在 1000ms 以内完成, 每次交易最长不能超过 10秒。 根据经验, 假设GC暂停时间比例不能超过10%。 也就是说, 90%的GC暂停必须在 100ms 内结束, 也不能有超过 1000ms 的GC暂停。为简单起见, 我们忽略在同一次交易过程中发生多次GC停顿的可能性。

有了正式的需求,下一步就是检查暂停时间。有许多工具可以使用, 在接下来的 6. GC 调优(工具篇) 中会进行详细的介绍, 在本节中我们通过查看GC日志, 检查一下GC暂停的时间。相关的信息散落在不同的日志片段中, 看下面的数据:

****-06-04T13:34:16.974-0200: 2.578: [Full GC (Ergonomics)
[PSYoungGen: 93677K->70109K(254976K)]
[ParOldGen: 499597K->511230K(761856K)]
593275K->581339K(1016832K),
[Metaspace: 2936K->2936K(1056768K)]
, 0.0713174 secs]
[Times: user=0.21 sys=0.02, real=0.07 secs

这表示一次GC暂停, 在 ****-06-04T13:34:16 这个时刻触发. 对应于JVM启动之后的 2,578 ms

此事件将应用线程暂停了 0.0713174 秒。虽然花费的总时间为 210 ms, 但因为是多核CPU机器, 所以最重要的数字是应用线程被暂停的总时间, 这里使用的是并行GC, 所以暂停时间大约为 70ms 。 这次GC的暂停时间小于 100ms 的阈值,满足需求。

继续分析, 从所有GC日志中提取出暂停相关的数据, 汇总之后就可以得知是否满足需求。

Throughput(吞吐量)

吞吐量和延迟指标有很大区别。当然两者都是根据一般吞吐量需求而得出的。一般吞吐量需求(Generic requirements for throughput) 类似这样:

  • 解决方案每天必须处理 100万个订单
  • 解决方案必须支持1000个登录用户,同时在5-10秒内执行某个操作: A、B或C
  • 每周对所有客户进行统计, 时间不能超过6小时,时间窗口为每周日晚12点到次日6点之间。

可以看出,吞吐量需求不是针对单个操作的, 而是在给定的时间内, 系统必须完成多少个操作。和延迟需求类似, GC调优也需要确定GC行为所消耗的总时间。每个系统能接受的时间不同, 一般来说, GC占用的总时间比不能超过 10%

现在假设需求为: 每分钟处理 1000 笔交易。同时, 每分钟GC暂停的总时间不能超过6秒(即10%)。

有了正式的需求, 下一步就是获取相关的信息。依然是从GC日志中提取数据, 可以看到类似这样的信息:

****-06-04T13:34:16.974-0200: 2.578: [Full GC (Ergonomics)
[PSYoungGen: 93677K->70109K(254976K)]
[ParOldGen: 499597K->511230K(761856K)]
593275K->581339K(1016832K),
[Metaspace: 2936K->2936K(1056768K)],
0.0713174 secs]
[Times: user=0.21 sys=0.02, real=0.07 secs

此时我们对 用户耗时(user)和系统耗时(sys)感兴趣, 而不关心实际耗时(real)。在这里, 我们关心的时间为 0.23s(user + sys = 0.21 + 0.02 s), 这段时间内, GC暂停占用了 cpu 资源。 重要的是, 系统运行在多核机器上, 转换为实际的停顿时间(stop-the-world)为 0.0713174秒, 下面的计算会用到这个数字。

提取出有用的信息后, 剩下要做的就是统计每分钟内GC暂停的总时间。看看是否满足需求: 每分钟内总的暂停时间不得超过6000毫秒(6秒)。

Capacity(系统容量)

系统容量(Capacity)需求,是在达成吞吐量和延迟指标的情况下,对硬件环境的额外约束。这类需求大多是来源于计算资源或者预算方面的原因。例如:

  • 系统必须能部署到小于512 MB内存的Android设备上
  • 系统必须部署在Amazon EC2实例上, 配置不得超过 c3.xlarge(4核8GB)。
  • 每月的 Amazon EC2 账单不得超过 $12,000

因此, 在满足延迟和吞吐量需求的基础上必须考虑系统容量。可以说, 假若有无限的计算资源可供挥霍, 那么任何 延迟和吞吐量指标 都不成问题, 但现实情况是, 预算(budget)和其他约束限制了可用的资源。

相关示例

介绍完性能调优的三个维度后, 我们来进行实际的操作以达成GC性能指标。

请看下面的代码:

//imports skipped for brevity
public class Producer implements Runnable {
  private static ScheduledExecutorService executorService
         = Executors.newScheduledThreadPool(2);
  private Deque<byte[]> deque;
  private int objectSize;
  private int queueSize;
  public Producer(int objectSize, int ttl) {
    this.deque = new ArrayDeque<byte[]>();
    this.objectSize = objectSize;
    this.queueSize = ttl * 1000;
  }
  @Override
  public void run() {
    for (int i = 0; i < 100; i++) {
        deque.add(new byte[objectSize]);
        if (deque.size() > queueSize) {
            deque.poll();
        }
    }
  }
  public static void main(String[] args)
        throws InterruptedException {
    executorService.scheduleAtFixedRate(
        new Producer(200 * 1024 * 1024 / 1000, 5),
        0, 100, TimeUnit.MILLISECONDS
    );
    executorService.scheduleAtFixedRate(
        new Producer(50 * 1024 * 1024 / 1000, 120),
        0, 100, TimeUnit.MILLISECONDS);
    TimeUnit.MINUTES.sleep(10);
    executorService.shutdownNow();
  }
}

这段程序代码, 每 100毫秒 提交两个作业(job)来。每个作业都模拟特定的生命周期: 创建对象, 然后在预定的时间释放, 接着就不管了, 由GC来自动回收占用的内存。

在运行这个示例程序时,通过以下JVM参数打开GC日志记录:

-XX:+PrintGCDetails -XX:+PrintGCDateStamps -XX:+PrintGCTimeStamps

还应该加上JVM参数 -Xloggc以指定GC日志的存储位置,类似这样:

-Xloggc:C:\\Producer_gc.log

在日志文件中可以看到GC的行为, 类似下面这样:

****-06-04T13:34:16.119-0200: 1.723: [GC (Allocation Failure)
        [PSYoungGen: 114016K->73191K(234496K)]
    421540K->421269K(745984K),
    0.0858176 secs]
    [Times: user=0.04 sys=0.06, real=0.09 secs]
****-06-04T13:34:16.738-0200: 2.342: [GC (Allocation Failure)
        [PSYoungGen: 234462K->93677K(254976K)]
    582540K->593275K(766464K),
    0.2357086 secs]
    [Times: user=0.11 sys=0.14, real=0.24 secs]
****-06-04T13:34:16.974-0200: 2.578: [Full GC (Ergonomics)
        [PSYoungGen: 93677K->70109K(254976K)]
        [ParOldGen: 499597K->511230K(761856K)]
    593275K->581339K(1016832K),
        [Metaspace: 2936K->2936K(1056768K)],
    0.0713174 secs]
    [Times: user=0.21 sys=0.02, real=0.07 secs]

基于日志中的信息, 可以通过三个优化目标来提升性能:

  • 确保最坏情况下,GC暂停时间不超过预定阀值
  • 确保线程暂停的总时间不超过预定阀值
  • 在确保达到延迟和吞吐量指标的情况下, 降低硬件配置以及成本。

为此, 用三种不同的配置, 将代码运行10分钟, 得到了三种不同的结果, 汇总如下:

堆内存大小(Heap) GC算法(GC Algorithm) 有效时间比(Useful work) 最长停顿时间(Longest pause)
-Xmx12g -XX:+UseConcMarkSweepGC 89.8% 560 ms
-Xmx12g -XX:+UseParallelGC 91.5% 1,104 ms
-Xmx8g -XX:+UseConcMarkSweepGC 66.3% 1,610 ms

使用不同的GC算法,和不同的内存配置,运行相同的代码, 以测量GC暂停时间与 延迟、吞吐量的关系。实验的细节和结果在后面章节详细介绍。

注意, 为了尽量简单, 示例中只改变了很少的输入参数, 此实验也没有在不同CPU数量或者不同的堆布局下进行测试。

Tuning for Latency(调优延迟指标)

假设有一个需求, 每次作业必须在 1000ms 内处理完成。我们知道, 实际的作业处理只需要100 ms,简化后, 两者相减就可以算出对 GC暂停的延迟要求。现在需求变成: GC暂停不能超过900ms。这个问题很容易找到答案, 只需要解析GC日志文件, 并找出GC暂停中最大的那个暂停时间即可。

再来看测试所用的三个配置:

堆内存大小(Heap) GC算法(GC Algorithm) 有效时间比(Useful work) 最长停顿时间(Longest pause)
-Xmx12g -XX:+UseConcMarkSweepGC 89.8% 560 ms
-Xmx12g -XX:+UseParallelGC 91.5% 1,104 ms
-Xmx8g -XX:+UseConcMarkSweepGC 66.3% 1,610 ms

可以看到,其中有一个配置达到了要求。运行的参数为:

java -Xmx12g -XX:+UseConcMarkSweepGC Producer

对应的GC日志中,暂停时间最大为 560 ms, 这达到了延迟指标 900 ms 的要求。如果还满足吞吐量和系统容量需求的话,就可以说成功达成了GC调优目标, 调优结束。

Tuning for Throughput(吞吐量调优)

假定吞吐量指标为: 每小时完成 1300万次操作处理。同样是上面的配置, 其中有一种配置满足了需求:

堆内存大小(Heap) GC算法(GC Algorithm) 有效时间比(Useful work) 最长停顿时间(Longest pause)
-Xmx12g -XX:+UseConcMarkSweepGC 89.8% 560 ms
-Xmx12g -XX:+UseParallelGC 91.5% 1,104 ms
-Xmx8g -XX:+UseConcMarkSweepGC 66.3% 1,610 ms

此配置对应的命令行参数为:

java -Xmx12g -XX:+UseParallelGC Producer

可以看到,GC占用了 8.5%的CPU时间,剩下的 91.5% 是有效的计算时间。为简单起见, 忽略示例中的其他安全点。现在需要考虑:

  • 每个CPU核心处理一次作业需要耗时 100ms
  • 因此, 一分钟内每个核心可以执行 60,000 次操作(每个job完成100次操作)
  • 一小时内, 一个核心可以执行 360万次操作
  • 有四个CPU内核, 则每小时可以执行: 4 x 3.6M = 1440万次操作

理论上,通过简单的计算就可以得出结论, 每小时可以执行的操作数为:  次, 满足需求。

值得一提的是, 假若还要满足延迟指标, 那就有问题了, 最坏情况下, GC暂停时间为 1,104 ms最大延迟时间是前一种配置的两倍。

Tuning for Capacity(调优系统容量)

假设需要将软件部署到服务器上(commodity-class hardware), 配置为 4核10G。这样的话, 系统容量的要求就变成: 最大的堆内存空间不能超过 8GB有了这个需求, 我们需要调整为第三套配置进行测试:

堆内存大小(Heap) GC算法(GC Algorithm) 有效时间比(Useful work) 最长停顿时间(Longest pause)
-Xmx12g -XX:+UseConcMarkSweepGC 89.8% 560 ms
-Xmx12g -XX:+UseParallelGC 91.5% 1,104 ms
-Xmx8g -XX:+UseConcMarkSweepGC 66.3% 1,610 ms

程序可以通过如下参数执行:

java -Xmx8g -XX:+UseConcMarkSweepGC Producer

测试结果是延迟大幅增长, 吞吐量同样大幅降低:

  • 现在,GC占用了更多的CPU资源, 这个配置只有 66.3%的有效CPU时间。因此,这个配置让吞吐量从最好的情况 13,176,000 操作/小时 下降到 不足 9,547,200次操作/小时.
  • 最坏情况下的延迟变成了 1,610 ms, 而不再是 560ms。

通过对这三个维度的介绍, 你应该了解, 不是简单的进行“性能(performance)”优化, 而是需要从三种不同的维度来进行考虑, 测量, 并调优延迟和吞吐量, 此外还需要考虑系统容量的约束。

以上就是jvm垃圾回收GC调优基础原理分析的详细内容,更多关于jvm垃圾回收GC调优的资料请关注我们其它相关文章!

原文链接:https://plumbr.io/handbook/gc-tuning

(0)

相关推荐

  • JVM完全解读之GC日志记录分析

    相信大家在系统学习jvm的时候都会有遇到过这样的问题,散落的jvm知识点知道很多,但是真正在线上环境遇到一些莫名其妙的gc异常时候却无从下手去分析. 关于这块的苦我也表示能够理解,之前光是JVM相关的八股文就整理了许多,但是经常是不知道如何在实战中使用.最近也尝试在模拟一些案例来训练自己的JVM相关知识,本文特意记录下这段调优经历. Java应用的GC评估 可能大多数程序员在开发完某个需求之后,往线上环境一丢,然后就基本不怎么关注后续的变化了.但是是否有考虑过,这些新引入的代码会对原有系统造成的

  • GC算法实现垃圾优先算法

    G1 – Garbage First(垃圾优先算法) G1最主要的设计目标是: 将STW停顿的时间和分布变成可预期以及可配置的.事实上, G1是一款软实时垃圾收集器, 也就是说可以为其设置某项特定的性能指标. 可以指定: 在任意 xx 毫秒的时间范围内, STW停顿不得超过 x 毫秒. 如: 任意1秒暂停时间不得超过5毫秒. Garbage-First GC 会尽力达成这个目标(有很大的概率会满足, 但并不完全确定,具体是多少将是硬实时的[hard real-time]). 为了达成这项指标,

  • java垃圾回收之实现串行GC算法

    我们可以选择JVM内置的各种算法.如果不通过参数明确指定垃圾收集算法, 则会使用宿主平台的默认实现.本章会详细介绍各种算法的实现原理. 下面是关于Java 8中各种组合的垃圾收集器概要列表,对于之前的Java版本来说,可用组合会有一些不同: Young Tenured JVM options Incremental(增量GC) Incremental -Xincgc Serial Serial -XX:+UseSerialGC Parallel Scavenge Serial -XX:+UseP

  • java垃圾回收之实现并行GC算法

    Parallel GC(并行GC) 并行垃圾收集器这一类组合, 在年轻代使用 标记-复制(mark-copy)算法, 在老年代使用 标记-清除-整理(mark-sweep-compact)算法.年轻代和老年代的垃圾回收都会触发STW事件,暂停所有的应用线程来执行垃圾收集.两者在执行 标记和 复制/整理阶段时都使用多个线程, 因此得名“(Parallel)”.通过并行执行, 使得GC时间大幅减少. 通过命令行参数 -XX:ParallelGCThreads=NNN 来指定 GC 线程数. 其默认值

  • GC算法实现篇之并发标记清除

    Concurrent Mark and Sweep(并发标记-清除) CMS的官方名称为 “Mostly Concurrent Mark and Sweep Garbage Collector”(主要并发-标记-清除-垃圾收集器). 其对年轻代采用并行 STW方式的 mark-copy (标记-复制)算法, 对老年代主要使用并发 mark-sweep (标记-清除)算法. CMS的设计目标是避免在老年代垃圾收集时出现长时间的卡顿.主要通过两种手段来达成此目标. 第一, 不对老年代进行整理, 而是

  • jvm垃圾回收GC调优基础原理分析

    目录 核心概念(Core Concepts) Latency(延迟) Throughput(吞吐量) Capacity(系统容量) 相关示例 Tuning for Latency(调优延迟指标) Tuning for Throughput(吞吐量调优) Tuning for Capacity(调优系统容量) 说明: Capacity: 性能,能力,系统容量; 文中翻译为”系统容量“; 意为硬件配置. GC调优(Tuning Garbage Collection)和其他性能调优是同样的原理.初学者

  • 详解JVM中的GC调优

    那些GC的默认值 其实GC或者说JVM的参数非常非常的多,有控制内存使用的: 有控制JIT的: 有控制分代比例的,也有控制GC并发的: 当然,大部分的参数其实并不需要我们自行去调整,JVM会很好的动态帮我们设置这些变量的值. 如果我们不去设置这些值,那么对GC性能比较有影响的参数和他们的默认值有哪些呢? GC的选择 我们知道JVM中的GC有很多种,不同的GC选择对java程序的性能影响还是比较大的. 在JDK9之后,G1已经是默认的垃圾回收器了. 我们看一下G1的调优参数. G1是基于分代技术的

  • jvm垃圾回收之GC调优工具分析详解

    进行GC性能调优时, 需要明确了解, 当前的GC行为对系统和用户有多大的影响.有多种监控GC的工具和方法, 本章将逐一介绍常用的工具. JVM 在程序执行的过程中, 提供了GC行为的原生数据.那么, 我们就可以利用这些原生数据来生成各种报告.原生数据(raw data) 包括: 各个内存池的当前使用情况, 各个内存池的总容量, 每次GC暂停的持续时间, GC暂停在各个阶段的持续时间. 可以通过这些数据算出各种指标, 例如: 程序的内存分配率, 提升率等等.本章主要介绍如何获取原生数据. 后续的章

  • JVM垃圾回收原理解析

    概述 Java运行时区域中,程序计数器,虚拟机栈,本地方法栈三个区域随着线程的而生,随线程而死,这几个区域的内存分配和回收都具备确定性,不需要过多考虑回收问题.而Java堆和方法区则不一样,一个接口的多个实现类需要的内存不一样,一个方法的多个分支需要的内存可能也不一眼,我们只有在运行期,才能知道会创建的对象,这部分的内存分配和回收,是垃圾回收器所关注的.垃圾回收器需要完成三个问题:那些内存需要回收:什么时候回收以及如何回收. 那些垃圾需要回收 垃圾回收的基本思想是考察一个对象的可达性,即从根节点

  • GC参考手册jvm垃圾回收详解

    1,什么是垃圾回收? 顾名思义,垃圾收集(Garbage Collection)的意思就是 —— 找到垃圾并进行清理.但现有的垃圾收集实现却恰恰相反: 垃圾收集器跟踪所有正在使用的对象,并把其余部分当做垃圾 我们不抠细节, 先从基础开始, 介绍垃圾收集的一般特征.核心概念以及实现算法. 2,手动内存管理(Manual Memory Management) 当今的自动垃圾收集算法极为先进, 但我们先来看看什么是手动内存管理.在那个时候, 如果要存储共享数据, 必须显式地进行 内存分配(alloca

  • 浅谈JVM垃圾回收之哪些对象可以被回收

    1.背景 Java语言相比于C和C++,一个最大的特点就是不需要程序员自己手动去申请和释放内存,这一切交由JVM来完成.在Java中,运行时的数据区域分为程序计数器.Java虚拟机栈.本地方法栈.方法区和堆.其中,程序计数器.虚拟机栈和本地方法栈是线程私有的,线程销毁后自动释放.垃圾回收的行为发生在堆和方法区,主要是堆,而堆中存储的主要是对象.那么自然而然地就会有这么几个问题,哪些对象可以被回收?通过什么方式回收?本文主要探讨第一个问题,以及JVM对Java中几种引用的回收策略. 2.如何判断一

  • 深入理解JVM垃圾回收算法

    目录 一.垃圾标记阶段 1.1.引用计数法 (java没有采用) 1.2.可达性分析算法 二.对象的finalization机制 2.1.对象是否"死亡" 三.使用(MAT与JProfiler)工具分析GCRoots 3.1.获取dump文件 3.2.GC Roots分析 四.垃圾清除阶段 4.1.标记-清除算法 4.2.复制算法 4.3.标记-压缩(整理,Mark-Compact)算法 4.4.以上三种垃圾回收算法对比 4.5.分代收集算法 4.6.增量收集算法 4.7.分区算法G1

  • JVM调优OutOfMemoryError异常分析

    目录 1.Java 堆溢出 1.1 设置JVM参数 1.2 测试代码 1.3 运行OOM日志 2.Java栈.本地方法栈溢出 2.1 设置JVM参数 2.2 测试代码 2.3 运行OOM日志 2.4 Java虚拟机OOM异常 3.Java 运行常量池溢出 3.1 设置JVM参数-注意区分jdk版本 3.2 测试代码 3.3 运行OOM日志 4.Java 方法区溢出-jdk8 4.1 设置JVM参数 4.2 测试代码 4.3 运行OOM日志 5.本机直接内存溢出 5.1 设置JVM参数 5.2 测

  • 浅谈JVM垃圾回收有哪些常用算法

    一.前言: 垃圾回收: 在未来的JDK中可能G1会为ZGC所取代 先问自己几个问题: 什么是垃圾? 垃圾就是堆内存中(范指)没有任何指针指向的对象实体.不具有可达性. 为什么要回收垃圾? 因为我们的内存是有限的,内存长时间不清理就会导致内存溢出,OOM: 只要是程序正在跑,那么就不断生成新的对象,我们需要GC开辟新的空间分配给新的对象. 我们怎么回收垃圾? 依靠Java的自动内存回收机制,机制的优劣由算法决定: 或者说是机制的适配度由算法和应用场景共同决定. 什么时候回收垃圾? 当堆中的实体对象

  • GC调优实战之过早提升Premature Promotion

    目录 过早提升(Premature Promotion) 如何测量提升速率 提升速率的意义 示例 过早提升的影响 解决方案 过早提升(Premature Promotion) 提升速率(promotion rate), 用于衡量单位时间内从年轻代提升到老年代的数据量.一般使用 MB/sec 作为单位, 和分配速率类似. JVM会将长时间存活的对象从年轻代提升到老年代.根据分代假设, 可能存在一种情况, 老年代中不仅有存活时间长的对象,也可能有存活时间短的对象.这就是过早提升:对象存活时间还不够长

随机推荐