基于OpenCV与JVM实现矩阵处理图像
目录
- 图片裁剪
- 图片模糊处理
- 子矩阵生成矩阵
- 从图片子矩阵生成矩阵
submat(int rowStart, int rowEnd, int colStart, int colEnd) 函数的返回值是一个矩阵对象。内容是原图的子矩阵或子区域。
首先我们用imread来读取图片,然后输出矩阵对象本身的一些信息
import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.core.Core; import org.opencv.core.MatOfInt; import org.opencv.imgcodecs.Imgcodecs; import origami.Origami; public class HelloCv { public static void main(String[] args) throws Exception { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); Mat mat = Imgcodecs.imread("./images/test.jpg",Imgcodecs.IMREAD_GRAYSCALE); System.out.println(mat); } }
由于这个矩阵是原始图片,所以它的isSubmat是false。
现在我们使用submat函数的第一种形式,输入参数是每一行和每一列的起始和终止值。
图片裁剪
import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.core.Core; import org.opencv.core.MatOfInt; import org.opencv.imgcodecs.Imgcodecs; import origami.Origami; public class HelloCv { public static void main(String[] args) throws Exception { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); Mat mat = Imgcodecs.imread("C:/HWKJ/ZRQ/OpenCv/matrixcv/images/test.jpg"); System.out.println(mat); Mat submat = mat.submat(200, 240, 300, 350); System.out.println(submat); } }
这里注意submat里的尺寸,尺寸根据原图的尺寸,超出原图的尺寸会报错,报错如下
然后我们输出裁剪的图片。
那么如何确认你想要截取图片的区域范围呢?也就是说怎么确定这四个参数的填写?我们以下图为例
截取后的图片
另外两种submat方式
Range(int row,int column)
row
:宽开始结束范围
column
:高开始结束范围
Mat submat2 = mat.submat(new Range(20,300),new Range(100,500)); Imgcodecs.imwrite("./images/output2.png",submat2);
Rect(int x, int y,int width, int height)
x:横坐标
y:纵坐标
width :宽
height:高
Mat submat3 = mat.submat(new Rect(0,200,100,100)); //submat3.setTo(new Scalar(255,0,0));//将图片绘制为蓝色 Imgcodecs.imwrite("./images/output3.png",submat3);
打开setTo如下:
Imgcodecs.imwrite("./images/blurtest.png",mat);
完整代码:
import org.opencv.core.CvType; import org.opencv.core.Scalar; import org.opencv.core.Mat; import org.opencv.core.Rect; import org.opencv.core.Range; import org.opencv.core.Core; import org.opencv.core.Size; import org.opencv.core.MatOfInt; import org.opencv.imgcodecs.Imgcodecs; import org.opencv.imgproc.Imgproc; import origami.Origami; public class HelloCv { public static void main(String[] args) throws Exception { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); Mat mat = Imgcodecs.imread("C:/HWKJ/ZRQ/OpenCv/matrixcv/images/test.jpg"); System.out.println(mat); Mat submat = mat.submat(200, 400, 200, 550); //System.out.println(submat); Imgcodecs.imwrite("./images/output.png",submat); Mat submat2 = mat.submat(new Range(20,300),new Range(100,500)); Imgcodecs.imwrite("./images/output2.png",submat2); Mat submat3 = mat.submat(new Rect(0,200,400,200)); submat3.setTo(new Scalar(255,0,0)); Imgcodecs.imwrite("./images/output3.png",submat3); //Imgproc.blur(submat,submat,new Size(25.0,25.0)); Imgcodecs.imwrite("./images/blurtest.png",mat); } }
图片模糊处理
import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.core.Core; import org.opencv.core.Size; import org.opencv.core.MatOfInt; import org.opencv.imgcodecs.Imgcodecs; import org.opencv.imgproc.Imgproc; import origami.Origami; public class HelloCv { public static void main(String[] args) throws Exception { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); Mat mat = Imgcodecs.imread("C:/HWKJ/ZRQ/OpenCv/matrixcv/images/test.jpg"); System.out.println(mat); Mat submat = mat.submat(200, 400, 200, 550); //System.out.println(submat); //Imgcodecs.imwrite("./images/output.png",submat); Imgproc.blur(submat,submat,new Size(25.0,25.0)); System.out.println("after:"+mat); Imgcodecs.imwrite("./images/blurtest.png",mat); } }
子矩阵生成矩阵
setTo和copyTo是OpenCv中两个非常重要的函数。
setTo可以将一个矩阵中的所有像素设置为指定的颜色
copyTo可以将一个已有的矩阵复制到另一个矩阵之中。
第一个颜色值代表蓝色的深度,第二个值代表绿色的深度,最后一个值代表红色的深度。
//获取红绿蓝 Scalar Red = new Scalar(0,0,255); Scalar Green = new Scalar(0,255,0); Scalar Blue = new Scalar(255,0,0);
我们把这些颜色当作RGB的补充色。因此把其他通道设置为最大值255,主通道设置为0。蓝绿色是红色的补充色,所以红色值通道被设为0,而另外两个通道为255;
定义蓝绿色、品红色和黄色
Scalar cyan = new Scalar(255,255,0); Scalar magena= new Scalar(255,0,255); Scalar yellow = new Scalar(0,255,255);
下面我们使用setTo将子矩阵设置为给定的Scalar颜色
private void setColors(Mat mat ,boolean comp,int row){ for (int i = 0; i <3 ; i++) { Mat sub = mat.submat(row*100,row*100+100,i*100,i*100+100); if(comp){ //RGB if (i==0){ sub.setTo(Red); }if (i==1){ sub.setTo(Green); }if (i==2){ sub.setTo(Blue); } }else { //cmy if (i==0){ sub.setTo(cyan); }if (i==1){ sub.setTo(magena); }if (i==2){ sub.setTo(yellow); } } } }
接下来,我们创建一个包含三个颜色通道矩阵,并且填充它的第一行和第二行
完整代码:
import org.opencv.core.CvType; import org.opencv.core.Scalar; import org.opencv.core.Mat; import org.opencv.core.Rect; import org.opencv.core.Range; import org.opencv.core.Core; import org.opencv.core.Size; import org.opencv.core.MatOfInt; import org.opencv.imgcodecs.Imgcodecs; import org.opencv.imgproc.Imgproc; import origami.Origami; public class HelloCv1 { public static Scalar Red = new Scalar(0,0,255); public static Scalar Green = new Scalar(0,255,0); public static Scalar Blue = new Scalar(255,0,0); public static Scalar cyan = new Scalar(255,255,0); public static Scalar magena= new Scalar(255,0,255); public static Scalar yellow = new Scalar(0,255,255); public static void main(String[] args) throws Exception { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); Mat mat = new Mat(200,300,CvType.CV_8UC3); setColors(mat,false,1); setColors(mat,true,0); Imgcodecs.imwrite("./images/rgbcmy.png",mat); } static void setColors(Mat mat ,boolean comp,int row){ for (int i = 0; i <3 ; i++) { Mat submat = mat.submat(row*100,row*100+100,i*100,i*100+100); if(comp){ //RGB if (i==0){ submat.setTo(Red); }if (i==1){ submat.setTo(Green); }if (i==2){ submat.setTo(Blue); } }else { //cmy if (i==0){ submat.setTo(cyan); }if (i==1){ submat.setTo(magena); }if (i==2){ submat.setTo(yellow); } } } } }
从图片子矩阵生成矩阵
首先创建一个大小为200x200的矩阵和子矩阵:一个是主矩阵的上部,一个是主矩阵的下部
int width = 200,height = 200; Mat mat1 = new Mat(height,width,CvType.CV_8UC3); Mat top = mat.submat(0,height/2,0,width); Mat bottom = mat.submat(height/2,height,0,width);
然后加载一个图片以创建另一个小矩阵,并把它的大小调整为上部(或下部)的子矩阵大小。这里会引入Imgproc类中的resize函数。
完整代码:
import org.opencv.core.CvType; import org.opencv.core.Scalar; import org.opencv.core.Mat; import org.opencv.core.Rect; import org.opencv.core.Range; import org.opencv.core.Core; import org.opencv.core.Size; import org.opencv.core.MatOfInt; import org.opencv.imgcodecs.Imgcodecs; import org.opencv.imgproc.Imgproc; import origami.Origami; public class HelloCv1 { public static Scalar Red = new Scalar(0,0,255); public static Scalar Green = new Scalar(0,255,0); public static Scalar Blue = new Scalar(255,0,0); public static Scalar cyan = new Scalar(255,255,0); public static Scalar magena= new Scalar(255,0,255); public static Scalar yellow = new Scalar(0,255,255); public static void main(String[] args) throws Exception { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); int width = 200,height = 300; Mat mat1 = new Mat(height,width,CvType.CV_8UC3); Mat top = mat1.submat(0,height/2,0,width); Mat bottom = mat1.submat(height/2,height,0,width); Mat small = Imgcodecs.imread("./images/test.jpg"); Imgproc.resize(small,small,top.size()); small.copyTo(top); small.copyTo(bottom); Imgcodecs.imwrite("./images/matofpictures.png",mat1); }
注意:设置大小的步骤很关键。复制能够成功,是因为小矩阵和子矩阵的大小是完全相同的,因此复制的时候没有出现任何问题
以上就是基于OpenCV与JVM实现矩阵处理图像的详细内容,更多关于OpenCV JVM矩阵处理图像的资料请关注我们其它相关文章!