python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

图像素描特效

图像素描特效主要经过以下几个步骤:

调用cv.cvtColor()函数将彩色图像灰度化处理;
通过cv.GaussianBlur()函数实现高斯滤波降噪;
边缘检测采用Canny算子实现;
最后通过cv.threshold()反二进制阈值化处理实现素描特效。

#coding:utf-8
import cv2 as cv
import numpy as np

#读取原始图像
img = cv.imread('d:/paojie.png')

#图像灰度处理
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)

#高斯滤波降噪
gaussian = cv.GaussianBlur(gray, (5,5), 0)

#Canny算子
canny = cv.Canny(gaussian, 50, 150)

#阈值化处理
ret, result = cv.threshold(canny, 0, 255, cv.THRESH_BINARY_INV+cv.THRESH_OTSU)

#显示图像
#cv.imshow('src', img)
#cv.imshow('result', result)
cv.imshow('result',np.vstack((gray,result)))
cv.waitKey()
cv.destroyAllWindows()

图像素描特效展示

图像怀旧特效

怀旧特效是将图像的RGB三个分量分别按照一定比例进行处理的结果,其怀旧公式如下所示:

#coding:utf-8
import cv2 as cv
import numpy as np

#读取原始图像
img = cv.imread('d:/paojie.png')

#获取图像行和列
rows, cols = img.shape[:2]

#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")

#图像怀旧特效
for i in range(rows):
  for j in range(cols):
    B = 0.272*img[i,j][2] + 0.534*img[i,j][1] + 0.131*img[i,j][0]
    G = 0.349*img[i,j][2] + 0.686*img[i,j][1] + 0.168*img[i,j][0]
    R = 0.393*img[i,j][2] + 0.769*img[i,j][1] + 0.189*img[i,j][0]
    if B>255:
      B = 255
    if G>255:
      G = 255
    if R>255:
      R = 255
    dst[i,j] = np.uint8((B, G, R))

#显示图像
cv.imshow('result',np.vstack((img,dst)))
cv.waitKey()
cv.destroyAllWindows()

图像怀旧特效展示

图像光照特效

图像光照特效是指图像存在一个类似于灯光的光晕特效,图像像素值围绕光照中心点呈圆形范围内的增强。
python实现代码主要是通过双层循环遍历图像的各像素点,寻找图像的中心点,再通过计算当前点到光照中心的距离(平面坐标系中两点之间的距离),判断该距离与图像中心圆半径的大小关系,中心圆范围内的图像灰度值增强,范围外的图像灰度值保留,并结合边界范围判断生成最终的光照效果。

#coding:utf-8
import cv2 as cv
import math
import numpy as np

#读取原始图像
img = cv.imread('d:/paojie.png')

#获取图像行和列
rows, cols = img.shape[:2]

#设置中心点和光照半径
centerX = rows / 2 - 20
centerY = cols / 2 + 20
radius = min(centerX, centerY)

#设置光照强度
strength = 100

#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")

#图像光照特效
for i in range(rows):
  for j in range(cols):
    #计算当前点到光照中心距离(平面坐标系中两点之间的距离)
    distance = math.pow((centerY-j), 2) + math.pow((centerX-i), 2)
    #获取原始图像
    B = img[i,j][0]
    G = img[i,j][1]
    R = img[i,j][2]
    if (distance < radius * radius):
      #按照距离大小计算增强的光照值
      result = (int)(strength*( 1.0 - math.sqrt(distance) / radius ))
      B = img[i,j][0] + result
      G = img[i,j][1] + result
      R = img[i,j][2] + result
      #判断边界 防止越界
      B = min(255, max(0, B))
      G = min(255, max(0, G))
      R = min(255, max(0, R))
      dst[i,j] = np.uint8((B, G, R))
    else:
      dst[i,j] = np.uint8((B, G, R))

#显示图像
cv.imshow('result',np.vstack((img,dst)))
cv.waitKey()
cv.destroyAllWindows()

图像光照特效展示

图像流年特效

流年是用来形容如水般流逝的光阴或年华,图像处理中特指将原图像转换为具有时代感或岁月沉淀的特效。python实现代码如下,它将原始图像的蓝色(B)通道的像素值开根号,再乘以一个权重参数,产生最终的流年效果。

#coding:utf-8
import cv2 as cv
import math
import numpy as np

#读取原始图像
img = cv.imread('d:/paojie.png')

#获取图像行和列
rows, cols = img.shape[:2]

#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")

#图像流年特效
for i in range(rows):
  for j in range(cols):
    #B通道的数值开平方乘以参数12
    B = math.sqrt(img[i,j][0]) * 12
    G = img[i,j][1]
    R = img[i,j][2]
    if B>255:
      B = 255
    dst[i,j] = np.uint8((B, G, R))

#显示图像
cv.imshow('result',np.vstack((img,dst)))
cv.waitKey()
cv.destroyAllWindows()

图像流年特效展示

图像滤镜特效

滤镜主要是用来实现图像的各种特殊效果,它在Photoshop中具有非常神奇的作用。滤镜通常需要同通道、图层等联合使用,才能取得最佳艺术效果。本小节将讲述一种基于颜色查找表(Look up Table)的滤镜处理方法,它通过将每一个原始颜色进行转换之后得到新的颜色。比如,原始图像的某像素点为红色(R-255, G-0, B-0),进行转换之后变为绿色(R-0, G-255, B-0),之后所有是红色的地方都会被自动转换为绿色,而颜色查找表就是将所有的颜色进行一次(矩阵)转换,很多的滤镜功能就是提供了这么一个转换的矩阵,在原始色彩的基础上进行颜色的转换。
假设现在存在一张新的滤镜颜色查找表,如图所示,它是一张512×512大小,包含各像素颜色分布的图像。下面这张图片另存为本地,即可直接用于图像滤镜处理。

#coding:utf-8
import cv2 as cv
import numpy as np

#获取滤镜颜色
def getBGR(img, table, i, j):
  #获取图像颜色
  b, g, r = img[i][j]
  #计算标准颜色表中颜色的位置坐标
  x = int(g/4 + int(b/32) * 63)
  y = int(r/4 + int((b%32) / 4) * 63)
  #返回滤镜颜色表中对应的颜色
  return lj_map[x][y]

#读取原始图像
img = cv.imread('d:/paojie.png')
lj_map = cv.imread('lvjing.png')

#获取图像行和列
rows, cols = img.shape[:2]

#新建目标图像
dst = np.zeros((rows, cols, 3), dtype="uint8")

#循环设置滤镜颜色
for i in range(rows):
  for j in range(cols):
    dst[i][j] = getBGR(img, lj_map, i, j)

#显示图像
cv.imshow('result',np.vstack((img,dst)))

cv.waitKey()
cv.destroyAllWindows()

图像滤镜特效展示

以上就是python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)的详细内容,更多关于python opencv图像处理的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python+OpenCV图像处理—— 色彩空间转换

    一.色彩空间的转换 代码如下: #色彩空间转换 import cv2 as cv def color_space_demo(img): gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) #RGB转换为GRAY 这里的GRAY是单通道的 cv.imshow("gray", gray) hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) #RGB转换为HSV cv.imshow("hsv", hsv) y

  • Python+OpenCV图像处理——打印图片属性、设置存储路径、调用摄像头

    一. 打印图片属性.设置图片存储路径 代码如下: #打印图片的属性.保存图片位置 import cv2 as cv import numpy as np #numpy是一个开源的Python科学计算库 def get_image_info(image): print(type(image)) #type() 函数如果只有第一个参数则返回对象的类型 在这里函数显示图片类型为 numpy类型的数组 print(image.shape) #图像矩阵的shape属性表示图像的大小,shape会返回tup

  • 基于python的opencv图像处理实现对斑马线的检测示例

    基本思路 斑马线检测通过opencv图像处理来进行灰度值转换.高斯滤波去噪.阈值处理.腐蚀和膨胀后对图像进行轮廓检测,通过判断车辆和行人的位置,以及他们之间的距离信息,当车速到超过一定阈值时并且与行人距离较近时,则会被判定车辆为未礼让行人. 结果示例 实验流程 先通过视频截取一张图片来进行测试,如果结果满意之后再嵌套到视频中,从而达到想要的效果. 1.预处理(灰度值转换.高斯滤波去噪.阈值处理.腐蚀和膨胀)> 根据自己的需求来修改一些值 #灰度值转换 imgGray = cv2.cvtColor

  • Python+OpenCV图像处理——实现直线检测

    简介: 1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等).最基本的霍夫变换是从黑白图像中检测直线(线段). 2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得到直线的斜率k与常熟b,圆就会得到圆心与半径等等) 3.霍夫线变

  • Python+OpenCV图像处理——图像二值化的实现

    简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 普通图像二值化 代码如下: import cv2 as cv import numpy as np #全局阈值 def threshold_demo(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化 #直接阈值化是对输入的单通道矩阵逐像素进行阈值分割. ret, binary = cv.threshold(gray

  • 详解python opencv、scikit-image和PIL图像处理库比较

    进行深度学习时,对图像进行预处理的过程是非常重要的,使用pytorch或者TensorFlow时需要对图像进行预处理以及展示来观看处理效果,因此对python中的图像处理框架进行图像的读取和基本变换的掌握是必要的,接下来python中几个基本的图像处理库进行纵向对比. 项目地址:https://github.com/Oldpan/Pytorch-Learn/tree/master/Image-Processing 比较的图像处理框架: PIL scikit-image opencv-python

  • Python+OpenCV图像处理——实现轮廓发现

    简介:轮廓发现是基于图像边缘提取的基础寻找对象轮廓的方法,所以边缘提取的阈值选定会影响最终轮廓发现结果. 代码如下: import cv2 as cv import numpy as np def contours_demo(image): dst = cv.GaussianBlur(image, (3, 3), 0) #高斯模糊去噪 gray = cv.cvtColor(dst, cv.COLOR_RGB2GRAY) ret, binary = cv.threshold(gray, 0, 25

  • Python Opencv图像处理基本操作代码详解

    1.图像读取 使用cv2.imread(filepath,flags)读入图像 filepath: 读入图像完整路径(绝对路径,相对路径) flags: 读入图像标志 cv2.IMREAD_COLOR:默认参数,读入一副彩色图,忽略alpha通道:可以通过1指定 cv2.IMREAD_GRAYSCALE:读入灰度图片 也通过0指定 cv2.IMREAD_UNCHANGED:读入完整图片,包括alpha通道 import cv2 img1 = cv2.imread('C:/star.png',1)

  • python opencv图像处理(素描、怀旧、光照、流年、滤镜 原理及实现)

    图像素描特效 图像素描特效主要经过以下几个步骤: 调用cv.cvtColor()函数将彩色图像灰度化处理: 通过cv.GaussianBlur()函数实现高斯滤波降噪: 边缘检测采用Canny算子实现: 最后通过cv.threshold()反二进制阈值化处理实现素描特效. #coding:utf-8 import cv2 as cv import numpy as np #读取原始图像 img = cv.imread('d:/paojie.png') #图像灰度处理 gray = cv.cvtC

  • python opencv图像处理基本操作示例详解

    目录 1.图像基本操作 ①读取图像 ②显示图像 ③视频读取 ④图像截取 ⑤颜色通道提取及还原 ⑥边界填充 ⑦数值计算 ⑧图像融合 2.阈值与平滑处理 ①设定阈值并对图像处理 ②图像平滑-均值滤波 ③图像平滑-方框滤波 ④图像平滑-高斯滤波 ⑤图像平滑-中值滤波 3.图像的形态学处理 ①腐蚀操作 ②膨胀操作 ③开运算和闭运算 4.图像梯度处理 ①梯度运算 ②礼帽与黑帽 ③图像的梯度处理 5.边缘检测 ①Canny边缘检测 1.图像基本操作 ①读取图像 ②显示图像 该函数中,name是显示窗口的名字

  • Python+OpenCV图像处理之直方图统计

    目录 1. 直方图概述 (1)基本概念 (2)直方图中的术语 2. 直方图绘制 (1)读取图像信息 (2)绘制直方图 3. 掩膜直方图 (1)基本概念 (2)实现代码 4. H-S 直方图 (1)基本概念 (2)绘制二维H-S直方图 1. 直方图概述 (1)基本概念 直方图就是对图像的另外一种解释,它描述了整幅图像的灰度分布.直方图的 x 轴代表灰度值(0~255),y 轴代表图片中同一种灰度值的像素点的数目,所以通过直方图我们可以对图像的亮度.灰度分布.对比度等有了一个直观的认识 (2)直方图

  • Python OpenCV图像处理之图像滤波特效详解

    目录 1分类 2邻域滤波 2.1线性滤波 2.2非线性滤波 3频域滤波 3.1低通滤波 3.2高通滤波 1 分类 图像滤波按图像域可分为两种类型: 邻域滤波(Spatial Domain Filter),其本质是数字窗口上的数学运算.一般用于图像平滑.图像锐化.特征提取(如纹理测量.边缘检测)等,邻域滤波使用邻域算子——利用给定像素周围像素值以决定此像素最终输出的一种算子 频域滤波(Frequency Domain Filter),其本质是对像素频率的修改.一般用于降噪.重采样.图像压缩等. 按

  • python opencv 图像处理之图像算数运算及修改颜色空间

    目录 1.图像加法 1.1Numpy加法 1.2OpenCV加法 2.图像融合 3.改变颜色空间 1.图像加法 图像加法有两种方式,一种是通过 Numpy 直接对两个图像进行相加,另一种是通过 OpenCV 的 add() 函数进行相加. 不管使用哪种方法,相加的两个图像必须具有相同的深度和类型,简单理解就是图像的大小和类型必须一致. 1.1Numpy加法 Numpy 的运算方法是: img = img1 + img2 ,然后再对最终的运算结果取模. 当最终的像素值 <= 255 时,则运算结果

随机推荐