将数据集制作成VOC数据集格式的实例

在做目标检测任务时,若使用Github已复现的论文时,需首先将自己的数据集转化为VOC数据集的格式,因为论文作者使用的是公开数据集VOC 2007、VOC2012、COCO等类型数据集做方法验证与比对。

一、VOC数据集格式

--VOCdevkit2007

--VOC2007

--Annotations (xml格式的文件)

--000001.xml

--ImageSets

--Layout

--Main

--train.txt

--test.txt

--val.txt

--trainval.txt

--Segmentation

--JPEGImages (训练集和测试集图片)

--000001.jpg

--results

二、转换过程步骤

1. 使用标注工具标注图片目标检测框,生成JSON格式的标注文件(本人使用此生成类型的标注工具,也可使用(LabelImg等标注工具);

2. 批量修改图片和标注文件名称,从000001.jpg、000001.json标号开始;

#coding='utf-8'
import os
import numpy as np

def imgs_rename(imgs_path):
  imgs_labels_name = np.array(os.listdir(imgs_path)).reshape(-1,2)
  # 从 000001开始
  i = 1
  for img_label_name in imgs_labels_name:
    if img_label_name[0].endswith('.jpg'):
      # 修改图片名称
      img_old_name = os.path.join(os.path.abspath(imgs_path), img_label_name[0])
      # 类别+图片编号  format(str(i),'0>3s') 填充对齐
      img_new_name = os.path.join(os.path.abspath(imgs_path), '00' + format(str(i),'0>4s') + '.jpg')
      os.rename(img_old_name, img_new_name)
      # 修改json文件名称
      label_old_name = os.path.join(os.path.abspath(imgs_path), img_label_name[1])
      label_new_name = os.path.join(os.path.abspath(imgs_path), '00' + format(str(i), '0>4s') + '.json')
      os.rename(label_old_name, label_new_name)
      i = i + 1

if __name__=='__main__':
  # 读取json文件的路径
  root = "read_file_path"

  imgs_rename(root)

3. 提取图片和标注文件到不同文件夹下,并将读取的标注框转化为txt文件格式(本人的图片和JSON文件在同一目录下生成);

import json
import os
import numpy as np
import cv2

#读取json格式文件,返回坐标
def read_json(file_name):
  file = open(file_name,'r',encoding='utf-8')
  set = json.load(file)
  # print("读取完整信息:",set)
  coord = set['objects'][0]['seg'] # 只读取第一个标注的车牌
  return coord

def save_imgs(imgs_jsons_files, imgs_path):
  # 提取图片文件夹中的jpg文件名称
  for idx in range(len(imgs_jsons_list)):
    if imgs_jsons_list[idx][-3:]=='jpg':
      img_name = imgs_jsons_list[idx]
      read_img_path = os.path.join(imgs_jsons_files, img_name)
      img = cv2.imread(read_img_path)
      save_img_path = os.path.join(imgs_path, img_name)
      cv2.imwrite(save_img_path, img)

def save_labels(imgs_jsons_files, labels_path):
  # 提取图片文件夹中的json文件名称
  for idx in range(len(imgs_jsons_list)):
    if imgs_jsons_list[idx][-4:] == 'json':
      json_name = imgs_jsons_list[idx]

      # 操作每一个json文件,读取并保存坐标
      json_path = os.path.join(imgs_jsons_files, json_name)
      json_coord = read_json(json_path)
      if len(json_coord) > 8:
        print("标注坐标多于四个点的文件名称:", json_name)

      # 提取左上和右下坐标
      roi_coord = []
      for idx in range(len(json_coord)):
        if idx == 0 or idx == 1 or idx == 4 or idx == 5:
          roi_coord.extend([json_coord[idx]])
      # 保存roi坐标到txt文件中
      label_path = labels_path + json_name[:6] + '.txt'
      np.savetxt(label_path, roi_coord)

if __name__=='__main__':
  print("loading......")
  # 读取jpg json文件的路径
  imgs_jsons_files = "Jpg_json_file_path"

  # 保存读取的真实标签路径
  labels_path = "save_labels_path"
  if not os.path.exists(labels_path):
    os.mkdir(labels_path)
  # 保存读取的图片
  imgs_path = "sabe_imgs_path"
  if not os.path.exists(imgs_path):
    os.mkdir(imgs_path)

  imgs_jsons_list = os.listdir(imgs_jsons_files)

  save_imgs(imgs_jsons_files, imgs_path)
  save_labels(imgs_jsons_files, labels_path)
  print("done!!!")

4. 转化标注框txt格式为xml格式;

# encoding = utf-8
import os
import numpy as np
import codecs
import cv2

def read_txt(label_path):
  file = open(label_path,'r',encoding='utf-8')
  label_lines = file.readlines()
  label = []
  for line in label_lines:
    one_line = float(line.strip().split('\n')[0])
    label.extend([one_line])
  return np.array(label,dtype=np.float64)

def covert_xml(label,xml_path, img_name, img_path):
  # 获得图片信息
  img = cv2.imread(img_path)
  height, width, depth = img.shape
  x_min,y_min,x_max,y_max = label

  xml = codecs.open(xml_path, 'w', encoding='utf-8')
  xml.write('<annotation>\n')
  xml.write('\t<folder>' + 'VOC2007' + '</folder>\n')
  xml.write('\t<filename>' + img_name + '</filename>\n')
  xml.write('\t<source>\n')
  xml.write('\t\t<database>The VOC 2007 Database</database>\n')
  xml.write('\t\t<annotation>Pascal VOC2007</annotation>\n')
  xml.write('\t\t<image>flickr</image>\n')
  xml.write('\t\t<flickrid>NULL</flickrid>\n')
  xml.write('\t</source>\n')
  xml.write('\t<owner>\n')
  xml.write('\t\t<flickrid>NULL</flickrid>\n')
  xml.write('\t\t<name>faster</name>\n')
  xml.write('\t</owner>\n')
  xml.write('\t<size>\n')
  xml.write('\t\t<width>' + str(width) + '</width>\n')
  xml.write('\t\t<height>' + str(height) + '</height>\n')
  xml.write('\t\t<depth>' + str(depth) + '</depth>\n')
  xml.write('\t</size>\n')
  xml.write('\t\t<segmented>0</segmented>\n')
  xml.write('\t<object>\n')
  xml.write('\t\t<name>plate</name>\n')
  xml.write('\t\t<pose>Unspecified</pose>\n')
  xml.write('\t\t<truncated>0</truncated>\n')
  xml.write('\t\t<difficult>0</difficult>\n')
  xml.write('\t\t<bndbox>\n')
  xml.write('\t\t\t<xmin>' + str(x_min) + '</xmin>\n')
  xml.write('\t\t\t<ymin>' + str(y_min) + '</ymin>\n')
  xml.write('\t\t\t<xmax>' + str(x_max) + '</xmax>\n')
  xml.write('\t\t\t<ymax>' + str(y_max) + '</ymax>\n')
  xml.write('\t\t</bndbox>\n')
  xml.write('\t</object>\n')
  xml.write('</annotation>')

if __name__=='__main__':
  labels_file_path = "D:/Code_py/VOC2007/labels/"
  imgs_file_path = "D:/Code_Py/VOC2007/imgs/"

  xmls_file_path = "D:/Code_py/VOC2007/xmls/"
  if not os.path.exists(xmls_file_path):
    os.mkdir(xmls_file_path)

  labels_name = os.listdir(labels_file_path)
  for label_name in labels_name:
    label_path = os.path.join(labels_file_path, label_name)
    label = read_txt(label_path)

    xml_name = label_name[:6]+'.xml'
    xml_path = os.path.join(xmls_file_path, xml_name)

    img_name = label_name[:6]+'.jpg'
    img_path = os.path.join(imgs_file_path, img_name)

    covert_xml(label, xml_path, img_name, img_path)

5. 切分数据集为训练集、验证集和测试集,仅保存图片的名称到txt问价下即可;

import os
import numpy as np

if __name__=='__main__':
  root = "save_path"
  train = open(root+"train.txt", 'w', encoding='utf-8')
  train_val = open(root+"trainval.txt", 'w', encoding='utf-8')
  test = open(root+"test.txt", 'w', encoding='utf-8')
  val = open(root+"val.txt", 'w', encoding='utf-8')

  imgs_path = os.path.join(root, "imgs")

  imgs_name = os.listdir(imgs_path)

  # 首先切分训练验证集和测试集
  train_val_img_info = []
  for img_name in imgs_name:
    x = np.random.uniform(0,1)
    img_info = str(img_name).strip().split('.')[0]
    # 随机选取1/2比例的数据为测试集
    if x>0.5:
      train_val_img_info.append(img_info)
      train_val.writelines(img_info)
    else:
      test.writelines(img_info+'\n')

  # 然后切分训练验证集为训练集和验证集
  for img_name in train_val_img_info:
    x = np.random.uniform(0,1)
    if x>0.5:
      train.writelines(img_name+'\n')
    else:
      val.writelines(img_name+'\n')

以上这篇将数据集制作成VOC数据集格式的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 将自己的数据集制作成TFRecord格式教程

    在使用TensorFlow训练神经网络时,首先面临的问题是:网络的输入 此篇文章,教大家将自己的数据集制作成TFRecord格式,feed进网络,除了TFRecord格式,TensorFlow也支持其他格 式的数据,此处就不再介绍了.建议大家使用TFRecord格式,在后面可以通过api进行多线程的读取文件队列. 1. 原本的数据集 此时,我有两类图片,分别是xiansu100,xiansu60,每一类中有10张图片. 2.制作成TFRecord格式 tfrecord会根据你选择输入文件的类,自

  • Windows下实现将Pascal VOC转化为TFRecords

    前言 由于TensorFlow常用TFrecords作为输入格式,我们需要将制作好的Pascal VOC转为TFrecords格式.使用 object detection API 内提供的脚本. TFRecords格式如下: -uint64 length -uint32 masked_crc32_of_length -byte data[length] -uint32 masked_crc32_of_data 前置要求: Anaconda3(使用python3.x) 制作好的Pascal VOC

  • pytorch中图像的数据格式实例

    计算机视觉方面朋友都需要跟图像打交道,在pytorch中图像与我们平时在matlab中见到的图像数据格式有所不同.matlab中我们通常使用函数imread()来轻松地读入一张图像,我们在变量空间中可看到数据的存储方式是H x W x C的顺序(其中H.W.C分别表示图像的高.宽和通道数,通道数一般为RGB三通道),另外,其中的每一个数据都是[0,255]的整数. 在使用pytorch的时候,我们通常要使用pytorch中torchvision包下面的datasets模块和transforms模

  • 将数据集制作成VOC数据集格式的实例

    在做目标检测任务时,若使用Github已复现的论文时,需首先将自己的数据集转化为VOC数据集的格式,因为论文作者使用的是公开数据集VOC 2007.VOC2012.COCO等类型数据集做方法验证与比对. 一.VOC数据集格式 --VOCdevkit2007 --VOC2007 --Annotations (xml格式的文件) --000001.xml --ImageSets --Layout --Main --train.txt --test.txt --val.txt --trainval.t

  • JS实现颜色的10进制转化成rgba格式的方法

    本文实例讲述了JS实现颜色的10进制转化成rgba格式的方法.分享给大家供大家参考,具体如下: 当我们在已知一个整数如(0~256x256x256x256 之间的颜色值),想获得关于它的3原色加一个透明度时,即alpha, red, green, blue,可采用如下方法: 方法一: function getColor(number) { let color = number; const blue = parseInt(color % 0x100, 10); color = color >>

  • Python爬取读者并制作成PDF

    学了下beautifulsoup后,做个个网络爬虫,爬取读者杂志并用reportlab制作成pdf.. crawler.py 复制代码 代码如下: #!/usr/bin/env python #coding=utf-8 """     Author:         Anemone     Filename:       getmain.py     Last modified:  2015-02-19 16:47     E-mail:         anemone@82

  • 使用PlatformView将 Android 控件view制作成Flutter插件

    目录 引言 1. FlutterPlugin 创建 2. 创建 Android 控件 3. 注册 Android 控件 4. 封装 Android 层通信交互 ‘CustomViewController’ 代码说明 5. 在 flutter 中如何使用已注册的 Android 控件(view) 代码说明 如何使用这个View 6. 附上 example 完整代码 引言 小编最近在项目中实现相机识别人脸的功能,将 Android 封装的控件 view 进行中转,制作成 FlutterPlugin

  • Python 解码Base64 得到码流格式文本实例

    我就废话不多说了,直接上代码吧! # coding:utf8 import base64 def BaseToFlow(): while True: str = input("Please input src: ") flag = input("Please input Decode - 1 or Encode - 2: ") if str == "": str = "ApIAGBcEAAAEBO6x3nLykEEhjWMX1wHs&q

  • php判断文件上传图片格式的实例详解

    php判断文件上传图片格式的实例详解 判断文件图片类型, $type = $_FILES['image']['tmp_name'];//文件名 //$type = $this->getImagetype( $type ); $filetype = ['jpg', 'jpeg', 'gif', 'bmp', 'png']; if (! in_array($type, $filetype)) { return "不是图片类型"; } 如上如果用户修改文件后缀为png jpeg等无法满

  • Linux中的bz2压缩格式的实例详解

    Linux中的bz2压缩格式的实例详解 一 语法 bzip2 源文件 压缩为bz2格式,不保存源文件 bzip2 -k 源文件 压缩之后保留原文件 注意:bzip2命令不能压缩目录 bzip2 -d 压缩文件 解压缩,-k保留压缩文件 bunzip2 压缩文件 解压缩,-k保留压缩文件  二 实战 [root@localhost test]# ls abc cdf dirtst [root@localhost test]# bzip2 abc [root@localhost test]# ls

  • jQuery判断邮箱格式对错实例代码讲解

    废话不多说了,具体代码如下所示: <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>检测Email地址格式是否正确</title> <script src="http://apps.bdimg.com/libs/jquery/1.10.2/jquery.min.js"><

  • SVN限制message字符个数及格式的实例

    一.编写 pre-commit脚本 ------------------------------------ #/bin/bash REPOS="$1" TXN="$2" # Make sure that the log message contains some text. SVNLOOK=/usr/bin/svnlook LOGMSG=`$SVNLOOK log -t "$TXN" "$REPOS" | grep &quo

随机推荐