python多项式拟合之np.polyfit 和 np.polyld详解

python数据拟合主要可采用numpy库,库的安装可直接用pip install numpy等。

1. 原始数据:假如要拟合的数据yyy来自sin函数,np.sin

import numpy as np
import matplotlib.pyplot as plt

xxx = np.arange(0, 1000) # x值,此时表示弧度
yyy = np.sin(xxx*np.pi/180) #函数值,转化成度

2. 测试不同阶的多项式,例如7阶多项式拟合,使用np.polyfit拟合,np.polyld得到多项式系数

z1 = np.polyfit(xxx, yyy, 7) # 用7次多项式拟合,可改变多项式阶数;
p1 = np.poly1d(z1) #得到多项式系数,按照阶数从高到低排列
print(p1) #显示多项式

3. 求对应xxx的各项拟合函数值

yvals=p1(xxx) # 可直接使用yvals=np.polyval(z1,xxx)

4. 绘图如下

plt.plot(xxx, yyy, '*',label='original values')
plt.plot(xxx, yvals, 'r',label='polyfit values')
plt.xlabel('x axis')
plt.ylabel('y axis')
plt.legend(loc=4) # 指定legend在图中的位置,类似象限的位置
plt.title('polyfitting')
plt.show()

5. np.polyfit函数:采用的是最小二次拟合,numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False),前三个参数是必须的

官方文档:https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.polyfit.html

6. np.polyld函数:得到多项式系数,主要有三个参数

 A one-dimensional polynomial class.

  A convenience class, used to encapsulate "natural" operations on
  polynomials so that said operations may take on their customary
  form in code (see Examples).

  Parameters
  ----------
  c_or_r : array_like
    The polynomial's coefficients, in decreasing powers, or if
    the value of the second parameter is True, the polynomial's
    roots (values where the polynomial evaluates to 0). For example,
    ``poly1d([1, 2, 3])`` returns an object that represents
    :math:`x^2 + 2x + 3`, whereas ``poly1d([1, 2, 3], True)`` returns
    one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`.
  r : bool, optional
    If True, `c_or_r` specifies the polynomial's roots; the default
    is False.
  variable : str, optional
    Changes the variable used when printing `p` from `x` to `variable`
    (see Examples).

参数1表示:在没有参数2(也就是参数2默认False时),参数1是一个数组形式,且表示从高到低的多项式系数项,例如参数1为[4,5,6]表示:

参数2表示:为True时,表示将参数1中的参数作为根来形成多项式,即参数1为[4,5,6]时表示:(x-4)(x-5)(x-6)=0,也就是:

参数3表示:换参数标识,用惯了x,可以用 t,s之类的

用法:

1. 直接进行运算,例如多项式的平方,分别得到

xx=np.poly1d([1,2,3])
print(xx)
yy=xx**2 #求平方,或者用 xx * xx
print(yy)

2. 求值:

yy(1) = 36

3. 求根:即等式为0时的未知数值

yy.r

4. 得到系数形成数组:

yy.c 为:array([ 1, 4, 10, 12, 9])

5. 返回最高次幂数:

yy.order = 4

6. 返回系数:

yy[0] —— 表示幂为0的系数

yy[1] —— 表示幂为1的系数

总结

以上所述是小编给大家介绍的python多项式拟合之np.polyfit 和 np.polyld详解,希望对大家有所帮助,也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • 在python中利用numpy求解多项式以及多项式拟合的方法

    构建一个二阶多项式:x^2 - 4x + 3 多项式求解 >>> p = np.poly1d([1,-4,3]) #二阶多项式系数 >>> p(0) #自变量为0时多项式的值 3 >>> p.roots #多项式的根 array([3., 1.]) >>> p(p.roots) #多项式根处的值 array([0., 0.]) >>> p.order #多项式的阶数 2 >>> p.coeffs #

  • Python实现的多项式拟合功能示例【基于matplotlib】

    本文实例讲述了Python实现的多项式拟合功能.分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- #! python2 import numpy as np import matplotlib.pyplot as plt from pylab import mpl mpl.rcParams['font.sans-serif'] = ['SimHei'] # 指定默认字体 plt.rcParams['axes.unicode_minus']=False #解决负数坐

  • Python 确定多项式拟合/回归的阶数实例

    通过 1至10 阶来拟合对比 均方误差及R评分,可以确定最优的"最大阶数". import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression,Perceptron from sklearn.metrics import mean_squared_

  • Python 普通最小二乘法(OLS)进行多项式拟合的方法

    多元函数拟合.如 电视机和收音机价格多销售额的影响,此时自变量有两个. python 解法: import numpy as np import pandas as pd #import statsmodels.api as sm #方法一 import statsmodels.formula.api as smf #方法二 import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D df = pd.read_c

  • python多项式拟合之np.polyfit 和 np.polyld详解

    python数据拟合主要可采用numpy库,库的安装可直接用pip install numpy等. 1. 原始数据:假如要拟合的数据yyy来自sin函数,np.sin import numpy as np import matplotlib.pyplot as plt xxx = np.arange(0, 1000) # x值,此时表示弧度 yyy = np.sin(xxx*np.pi/180) #函数值,转化成度 2. 测试不同阶的多项式,例如7阶多项式拟合,使用np.polyfit拟合,np

  • 关于numpy中np.nonzero()函数用法的详解

    np.nonzero函数是numpy中用于得到数组array中非零元素的位置(数组索引)的函数.一般来说,通过help(np.nonzero)能够查看到该函数的解析与例程.但是,由于例程为英文缩写,阅读起来还是很费劲,因此,本文将其英文解释翻译成中文,便于理解. 解释 nonzero(a) 返回数组a中非零元素的索引值数组. (1)只有a中非零元素才会有索引值,那些零值元素没有索引值: (2)返回的索引值数组是一个2维tuple数组,该tuple数组中包含一维的array数组.其中,一维arra

  • Python数学建模StatsModels统计回归之线性回归示例详解

    目录 1.背景知识 1.1 插值.拟合.回归和预测 1.2 线性回归 2.Statsmodels 进行线性回归 2.1 导入工具包 2.2 导入样本数据 2.3 建模与拟合 2.4 拟合和统计结果的输出 3.一元线性回归 3.1 一元线性回归 Python 程序: 3.2 一元线性回归 程序运行结果: 4.多元线性回归 4.1 多元线性回归 Python 程序: 4.2 多元线性回归 程序运行结果: 5.附录:回归结果详细说明 1.背景知识 1.1 插值.拟合.回归和预测 插值.拟合.回归和预测

  • 基于Python数据可视化利器Matplotlib,绘图入门篇,Pyplot详解

    Pyplot matplotlib.pyplot是一个命令型函数集合,它可以让我们像使用MATLAB一样使用matplotlib.pyplot中的每一个函数都会对画布图像作出相应的改变,如创建画布.在画布中创建一个绘图区.在绘图区上画几条线.给图像添加文字说明等.下面我们就通过实例代码来领略一下他的魅力. import matplotlib.pyplot as plt plt.plot([1,2,3,4]) plt.ylabel('some numbers') plt.show() 上图是我们通

  • Python实现霍夫圆和椭圆变换代码详解

    在极坐标中,圆的表示方式为: x=x0+rcosθ y=y0+rsinθ 圆心为(x0,y0),r为半径,θ为旋转度数,值范围为0-359 如果给定圆心点和半径,则其它点是否在圆上,我们就能检测出来了.在图像中,我们将每个非0像素点作为圆心点,以一定的半径进行检测,如果有一个点在圆上,我们就对这个圆心累加一次.如果检测到一个圆,那么这个圆心点就累加到最大,成为峰值.因此,在检测结果中,一个峰值点,就对应一个圆心点. 霍夫圆检测的函数: skimage.transform.hough_circle

  • 利用Python代码实现数据可视化的5种方法详解

    前言 数据科学家并不逊色于艺术家.他们用数据可视化的方式绘画,试图展现数据内隐藏的模式或表达对数据的见解.更有趣的是,一旦接触到任何可视化的内容.数据时,人类会有更强烈的知觉.认知和交流. 数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型.高维数据集.在项目结束时,以清晰.简洁和引人注目的方式展现最终结果是非常

  • 对Python 中矩阵或者数组相减的法则详解

    最近在做编程练习,发现有些结果的值与答案相差较大,通过分析比较得出结论,大概过程如下: 定义了一个计算损失的函数: def error(yhat,label): yhat = np.array(yhat) label = np.array(label) error_sum = ((yhat - label)**2).sum() return error_sum 主要出现问题的是 yhat - label 部分,要强调的是一定要保证两者维度是相同的!这点很重要,否则就会按照python的广播机制进

  • 对python PLT中的image和skimage处理图片方法详解

    用PLT比较轻量级,用opencv是比较重量级 import numpy as np from PIL import Image if __name__ == '__main__': image_file = '/Users/mac/Documents/学习文档/机器学习/5.Package/son.png' height = 100 #假定写入图片的高度是100 img = Image.open(image_file) img_width, img_height = img.size #获取i

  • Python数字图像处理之霍夫线变换实现详解

    在图片处理中,霍夫变换主要是用来检测图片中的几何形状,包括直线.圆.椭圆等. 在skimage中,霍夫变换是放在tranform模块内,本篇主要讲解霍夫线变换. 对于平面中的一条直线,在笛卡尔坐标系中,可用y=mx+b来表示,其中m为斜率,b为截距.但是如果直线是一条垂直线,则m为无穷大,所有通常我们在另一坐标系中表示直线,即极坐标系下的r=xcos(theta)+ysin(theta).即可用(r,theta)来表示一条直线.其中r为该直线到原点的距离,theta为该直线的垂线与x轴的夹角.如

  • python中的数组赋值与拷贝的区别详解

    具体的注解我已经写在了程序里面:通俗的解释了python里面的浅拷贝与深拷贝的不同,请看程序. # -*- coding: utf-8 -*- import numpy as np import copy as cp import matplotlib.pyplot as plt import time import math fig = plt.figure() ax = fig.add_subplot(241) # 定义一个多维数组 x = np.array([[1, 2, 3], [4,

随机推荐