Python通过Tesseract库实现文字识别
机器视觉
从Google的无人驾驶汽车到可以识别假钞的自动售卖机,机器视觉一直都是一个应用广泛且具有深远的影响和雄伟的愿景的领域。
这里我们将重点介绍机器视觉的一个分支:文字识别。介绍如何用一些Python库来识别和使用在线图片中的文字。
我们可以很轻松的阅读图片里的文字,但是机器阅读这些图片就会非常困难,利用这种人类用户可以正常读取但是大多数存贮器没法读取的图片,这时验证码(CAPTCHA)就出现了。验证码读取的难易程序也大不相同。
将图像翻译成文字一般被称为光学文字识别(Optical Character Recognition,OCR)。可以实现OCR的底层库并不多,目前很多库都是使用共同的几个底层OCR库,或者是在上面进行定制。
OCR库概述
在读取和处理图像、图像相差的机器学习以及创建图像等任务中,Python一直都是非常出色的语言。虽然有很多库可以进行图像处理,但是这里我们只介绍Tesseract库。
Tesseract
Tesseract是一个OCR库,目前由Google赞助。Tesseract是目前公认最优秀、最精确的开源OCR系统。除了极高的精确度,Tesseract也具有很高的灵活性。它可以通过训练识别出任何字体,也可以识别出任何Unicode字符。
安装Tesseract:Windows系统
下载可执行安装文件安装即可。
安装pytesseract
Tesseract是一个Python的命令行工具,不是通过import语句导入的库。安装之后,要用tesseract命令在Python的外面运行,但我们可以通过pip安装支持Python版本的Tesseract库:
pip install pytesseract
处理规范的文字
你要处理的大多数文字都是比较干净、格式规范的。格式霍英东的文字通常具有以下特点:
使用统一的标准字体(不包含手写体、草书或者十分“花哨”的字体),复印或者拍照但是字体清晰、没有多余的痕迹或者污点排列整齐,没有歪歪斜斜的字没有超出图片范围,也没有残缺不全,或紧紧贴在图片的边缘
文字的一些格式问题在图片预处理时可以进行解决。例如,可以把图片转换成灰度图,调整亮度和对比度,还可以根据需要进行裁剪和旋转,在这里不作介绍。
示例:
英文:
识别结果的准确率还是挺高的。
通过Python代码实现
英文:
中文:
运行结果
This is some text, written in Arial, that will be read by
Tesseract. Here are some symbols: !@#$%"&*()
******************************
中 华 人 民 共 和 国
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。
相关推荐
-
Python识别快递条形码及Tesseract-OCR使用详解
识别快递单号 这次跟老师做项目,这项目大概是流水线上识别快递上的快递单号.首先我尝试了解条形码的基本知识 百度百科:条形码 条形码(barcode)是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符.常见的条形码是由反射率相差很大的黑条(简称条)和白条(简称空)排成的平行线图案.条形码可以标出物品的生产国.制造厂家.商品名称.生产日期.图书分类号.邮件起止地点.类别.日期等许多信息,因而在商品流通.图书管理.邮政管理.银行系统等许多领域都得到广泛的应用. 条形码有
-
Python3.6使用tesseract-ocr的正确方法
Tesseract介绍 tesseract是一个挺不错的OCR引擎,目前的问题是最新的中文资料相对较少,过时.不准确的信息偏多. tesseract是一个google支持的开源ocr项目,其项目地址:https://github.com/tesseract-ocr/tesseract,目前最新的源码可以在这里下载. 实际使用tesseract ocr也有两种方式:1. 动态库方式 libtesseract 2. 执行程序方式 tesseract.exe 环境 Python 3.6.3 pip
-
python利用Tesseract识别验证码的方法示例
无论是是自动化登录还是爬虫,总绕不开验证码,这次就来谈谈python中光学识别验证码模块tesserocr和pytesseract.tesserocr和pytesseract是Python的一个OCR识别库,但其实是对tesseract做的一层Python API封装,pytesseract是Google的Tesseract-OCR引擎包装器:所以它们的核心是tesseract,因此在安装tesserocr之前,我们需要先安装tesseract. 下载安装 下载地址:https://digi.b
-
python识别文字(基于tesseract)代码实例
这篇文章主要介绍了python识别文字(基于tesseract)代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Ubuntu版本: 1.tesseract-ocr安装 sudo apt-get install tesseract-ocr 2.pytesseract安装 sudo pip install pytesseract 3.Pillow 安装 sudo pip install pillow 开始写代码: from PIL impo
-
python3光学字符识别模块tesserocr与pytesseract的使用详解
OCR,即Optical Character Recognition,光学字符识别,是指通过扫描字符,然后通过其形状将其翻译成电子文本的过程,对应图形验证码来说,它们都是一些不规则的字符,这些字符是由字符稍加扭曲变换得到的内容,我们可以使用OCR技术来讲其转化为电子文本,然后将结果提取交给服务器,便可以达到自动识别验证码的过程 tesserocr与pytesseract是Python的一个OCR识别库,但其实是对tesseract做的一层Python API封装,pytesseract是Goog
-
Python基于内置库pytesseract实现图片验证码识别功能
这篇文章主要介绍了Python基于内置库pytesseract实现图片验证码识别功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 环境准备: 1.安装Tesseract模块 git文档地址:https://digi.bib.uni-mannheim.de/tesseract/ 下载后就是一个exe安装包,直接右击安装即可,安装完成之后,配置一下环境变量,编辑 系统变量里面 path,添加下面的安装路径: 2.如果您想使用其他语言,请下载相应的
-
python3使用Pillow、tesseract-ocr与pytesseract模块的图片识别的方法
1.安装Pillow pip install Pillow 2.安装tesseract-ocr github地址: https://github.com/tesseract-ocr/tesseract 或本地下载地址:https://www.jb51.net/softs/538925.html windows: The latest installer can be downloaded here: tesseract-ocr-setup-3.05.01.exe and tesseract-oc
-
Python通过Tesseract库实现文字识别
机器视觉 从Google的无人驾驶汽车到可以识别假钞的自动售卖机,机器视觉一直都是一个应用广泛且具有深远的影响和雄伟的愿景的领域. 这里我们将重点介绍机器视觉的一个分支:文字识别.介绍如何用一些Python库来识别和使用在线图片中的文字. 我们可以很轻松的阅读图片里的文字,但是机器阅读这些图片就会非常困难,利用这种人类用户可以正常读取但是大多数存贮器没法读取的图片,这时验证码(CAPTCHA)就出现了.验证码读取的难易程序也大不相同. 将图像翻译成文字一般被称为光学文字识别(Optical Ch
-
python利用百度AI实现文字识别功能
本文为大家分享了python实现文字识别功能大全,供大家参考,具体内容如下 1.通用文字识别 # -*- coding: UTF-8 -*- from aip import AipOcr # 定义常量 APP_ID = '11352343' API_KEY = 'Nd5Z1NkGoLDvHwBnD2bFLpCE' SECRET_KEY = 'A9FsnnPj1Ys2Gof70SNgYo23hKOIK8Os' # 初始化AipFace对象 aipOcr = AipOcr(APP_ID, API_K
-
Python基于百度AI的文字识别的示例
使用百度AI的文字识别库,做出的调用示例,其中filePath是图片的路径,可以自行传入一张带有文字的图片,进行识别. 下载baidu-aip这个库,可以直接使用pip下载:pip install baidu-aip,也可以在PyCharm等开发工具中下载. 然后运行下列代码即可. # -*- coding: UTF-8 -*- from aip import AipOcr import json # 定义常量 APP_ID = '9851066' API_KEY = 'LUGBatgyRGoe
-
python使用Tesseract库识别验证
一.Tesseract简介 Tesseract是一个OCR库(OCR是英文Optical Character Recognition的缩写),它用来对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程,Tesseract是目前公认最优秀,识别相对精准的OCR库. 二.Tesseract的使用 1.下载并安装Tesseract:点击下载 2.在Windows系统下设置环境变量: #根据下载安装文件的路径配置环境变量 set TESSDATA_PREFIX F:\Tesserac
-
Python基于百度云文字识别API
本文实例为大家分享了Python实现最简单的文字识别的具体代码,供大家参考,具体内容如下 Python版本:3.6.5 百度云提供的文字识别技术,准确率还是非常高的,而且每天还有5w次免费的调用量,对于用来学习或者偶尔拿来用用,已经完全足够了.文章提供一个模板,稍加修改就可以直接套用.注释中提到必须输入的地方,你都正确地输入了的话,就可以完成一次简单的文字识别了. # -*- coding: utf-8 -*- import requests import base64 class Orc_ma
-
Python图像处理之图片文字识别功能(OCR)
OCR与Tesseract介绍 将图片翻译成文字一般被称为光学文字识别(Optical Character Recognition,OCR).可以实现OCR 的底层库并不多,目前很多库都是使用共同的几个底层OCR 库,或者是在上面进行定制. Tesseract 是一个OCR 库,目前由Google 赞助(Google 也是一家以OCR 和机器学习技术闻名于世的公司).Tesseract 是目前公认最优秀.最精确的开源OCR 系统. 除 了极高的精确度,Tesseract 也具有很高的灵活性.它可
-
Python 实现任意区域文字识别(OCR)操作
本文的OCR当然不是自己从头开发的,是基于百度智能云提供的API(我感觉是百度在中国的人工智能领域值得称赞的一大贡献),其提供的API完全可以满足个人使用,相对来说简洁准确率高. 安装OCR Python SDK OCR Python SDK目录结构 ├── README.md ├── aip //SDK目录 │ ├── __init__.py //导出类 │ ├── base.py //aip基类 │ ├── http.py //http请求 │ └── ocr.py //OCR └── se
-
Python实现PDF文字识别提取并写入CSV文件
目录 1.前言 2.需求描述 3.开始动手动脑 3.1安装相关第三方包 3.2导入需要用到的第三方库 3.3读取pdf文件,并识别内容 3.4对识别的数据进行处理,写入csv文件 总结 1. 前言 扫描件一直受大众青睐,任何纸质资料在扫描之后进行存档,想使用时手机就能打开,省心省力.但是扫描件的优点也恰恰造成了它的一个缺点,因为是通过电子设备扫描,所以出来的是图像,如果想要处理文件上的内容,直接操作是无法实现的. 那要是想要引用其中的内容怎么办呢?别担心,Python帮你解决问题. 2. 需求描
-
Python调用百度AI实现图片上文字识别功能实例
目录 简介 步骤 安装百度AI库 注册百度AI开放平台 调用glob库 调用AipOcr库识别文字 可能会遇到的问题 批量操作 总结 简介 Python免费调用百度AI实现图片上面的文字识别 步骤 安装百度AI库 !pip install baidu-aip 注册百度AI开放平台 先注册百度AI,获得ID和密钥.注册方法可参考:注册方法 只需走到 "1.6 获取密钥" 即可.然后记录下自己的APP_ID.API_KEY.SECRET_KEY,就可以开始了. 调用glob库 glob库用
随机推荐
- Java实现循环体的过滤器的方法
- MUI 上拉刷新/下拉加载功能实例代码
- AutoSave/自动存储功能实现
- php简单图像创建入门实例
- PHP学习 mysql第1/2页
- Python开发微信公众平台的方法详解【基于weixin-knife】
- python文件和目录操作方法大全(含实例)
- 使用jQuery卸载全部事件的思路详解
- 跟我学习javascript的arguments对象
- javascript实现汉字转拼音代码分享
- 深入浅析JS的数组遍历方法(推荐)
- C#中WPF使用多线程调用窗体组件的方法
- Android 实现ListView的点击变色的实例
- java application maven项目打自定义zip包实例(推荐)
- C++基于随机数实现福彩双色球的方法示例
- swift4.0实现视频播放、屏幕旋转、倍速播放、手势调节及锁屏面板等功能实例
- node使用promise替代回调函数
- PHP之认识(二)关于Traits的用法详解
- 浅谈一种让小程序支持JSX语法的新思路
- Django如何将URL映射到视图