python算法深入理解风控中的KS原理

目录
  • 一、业务背景
  • 二、直观理解区分度的概念
  • 三、KS统计量的定义
  • 四、KS计算过程及业务分析
    • KS常用的计算方法:
    • 上标指标计算逻辑:
  • 五、风控中选择KS的原因
    • 例1:模糊性
    • 例2:连续性

一、业务背景

在金融风控领域,常常使用KS指标来衡量评估模型的区分度(discrimination),这也是风控模型最为追求的指标之一。下面将从区分度概念、KS计算方法、业务指导意义、几何解析、数学思想等角度,对KS进行深入剖析。

二、直观理解区分度的概念

在数据探索中,若想大致判断自变量x对因变量y有没有区分度,常会将样本分为正负来观察变量的分布差异。那么,如何判断自变量是有用的?直观理解,如果两个分布的重叠部分越小,代表正负样本的差异性越大,自变量就能更好的将正负样本区分开来。具体如图1所示。

打个比方,想象这个变量就是一双手,把这个分布往两边拉开。这双手的力量越大,两个概率分布间隔就越远,说明变量区分性就越强。

图1 - 正负样本分布差异对比

import matplotlib
import numpy as np
import matplotlib.pyplot as plt
mu = 100  # mean of distribution
sigma = 15  # standard deviation of distribution
x = mu + sigma * np.random.randn(20000)
num_bins = 80
fig, ax = plt.subplots()
# the histogram of the data
n, bins, patches = ax.hist(x, num_bins, density=1)
n1, bins1, patches1 = ax.hist(x - 20, num_bins, density=1)
# add a 'best fit' line
y = ((1 / (np.sqrt(2 * np.pi) * sigma)) * np.exp(-0.5 * (1 / sigma * (bins - mu))**2))
y1 = ((1 / (np.sqrt(2 * np.pi) * sigma)) * np.exp(-0.5 * (1 / sigma * (bins - mu))**2))
ax.plot(bins, y, '--', label = 'bads')
ax.plot(bins1, y, '--', label = 'goods')
ax.set_xlabel('Varible')
ax.set_ylabel('Probability density')
ax.set_title('Distribution of bads and goods')
  fig.tight_layout()
plt.grid(True,linestyle = ':', color = 'r', alpha = 0.7)
plt.legend()
plt.show()

三、KS统计量的定义

KS(Kolmogorov-Smirnov)统计量由两位苏联科学家A.N.Kolmogorov和N.V.Smirnov提出。

在风控中KS通常用于评估模型区分度,区分度越大,说明模型风险排序能力越强。

KS是基于经验累积分布函数(Emporical Cumulative Distribution Function,ecdf)建立的

四、KS计算过程及业务分析

KS常用的计算方法:

step1:对变量进行分箱(binning),可以选择等频、等距或者自定义距离。

step2:计算每个分箱区间的好样本数(goods)与坏样本数(bads)。

step3:计算每个分箱区间内累计好客户占总好客户比值(cum_good_rate)和累计坏客户占总坏客户比值(cum_bad_rate)。

step4:计算每个分箱区间累计坏客户占比与累计好客户占比的绝对值,得到KS曲线,也就是:

step5:在这些绝对值中取最大值,得到此变量的最终KS值。

为了便于理解,以具体的数据展示上述过程:

表1 - KS计算过程表

上标指标计算逻辑:

从上表中可以得到以下信息:

1.模型分数越高,逾期率越低,因此低分段bad_rate相对于高分段更高,cum_bad_rate曲线增长速率会比cum_good_rate更快。cum_bad_rate曲线在cum_good_rate曲线上方。

2.每个分箱样本数量基本相同,说明是等频分箱。

3.如将cutoff限定为0.65,则其cum_bad_rate为82.75%,表示有82.75%的坏客户会被拒绝,但同时cum_good_rate为29.69%,表示同时会有29.69%的好客户会被拒绝。

4.根据bad_rate的变化趋势,模型的排序性很好。如果是A卡,对排序性的要求会更高,因为需要根据风险等级对用户风险定价。

5.模型的KS达到53.1%,区分度较强,这是最理想的状态,实际业务应用中需要根据预设条件权衡通过率与坏账率的关系,一般cutoff不会选在理想值处,因此可知,KS是区分度的上限。

6.对于A卡来说,通常KS很难达到52%,因此,若上表数据为A卡结果,需要进一步确认模型是否发生过拟合。

需要进一步指出的是,KS是在放贷样本上评估的,放贷样本对于全量样本永远是有偏的。对于裸奔风控系统,偏差会很小;反之如果风控系统做的越好,偏差就会越大。因此KS不仅仅只是一个数字,其背后蕴藏的很多原因,需要结合业务进行具体分析。

当KS不佳时,为了达到预期目的,可进行以下校验:

1.检验入模变量是否已被策略使用,使用重复变量会导致模型无法命中本应被命中的坏客户,导致模型效果下降。

2.检验训练样本与验证样本之间的客群差异是否明显,其中包括时间分布,某些特征分布、特殊特征命中情况等。

3.开发对目标场景更具针对性的新特征,比如税务场景,在进行特征衍生时,更加关注税务指标;如识别长期风险,就使用强金融属性变量,对于欺诈风险,就使用一些短期的负面变量。

4.分群建模,但须考虑稳定性与差异性,防止过拟合。

5.坏客户分析,试图通过个性推共性。

对表1数据进行可视化,便得到KS曲线,主要使用到最后三列数据,即cum_good_rate、cum_bad_rate和KS,具体代码和图像如下:

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
cum_good_rate = np.array([0.00,0.05,0.12,0.20,0.30,0.41,0.53,0.71,0.86,1.00])
cum_bad_rate = np.array([0.26,0.45,0.59,0.72,0.83,0.90,0.97,0.99,1.00,1.00])
x = np.linspace(0, 1, 10)
plt.plot(x, cum_good_rate, label = 'cum_good_rate')
plt.plot(x, cum_bad_rate, label = 'cum_bad_rate')
plt.plot(x, cum_bad_rate - cum_good_rate, label = 'KS')
plt.title('KS Curve', fontsize = 16)
plt.grid(True,linestyle = ':', color = 'r', alpha = 0.7)
plt.axhline(y = 0.53, c = 'r', ls = '--', lw = 3)     #绘制平行于x轴的水平参考线
plt.axvline(x = 0.43, c = 'r', ls = '--', lw = 3)     #绘制平行于y轴的垂直参考线
plt.legend()
plt.show()

图2 - KS曲线

至此,我们已经了解了KS的计算的基本流程、评价标准、业务指导意义和优化思路,接下来有几个问题:

1.为什么风控中常用KS来评价模型效果,而不是使用准确率、召回率等?

2.最大KS只是一个宏观的结果,那么在不同的cutoff下取到max,模型效果有何差异?

3.一般情况下,KS越大越好,但为什么通常认为高于75%的KS就不可靠了?

五、风控中选择KS的原因

风控建模过程中,常把样本标签分为GBIX四类,其中:G=Good(好人,标记为0),B=Bad(坏人,标记为1),I=Indeterminate(不定,未进入表现期),X=Exclusion(排斥,异常样本)。

需要指出的是,Good与Bad之间的定义往往是模糊的、连续的,依赖于实际业务需求。这里举两个例子帮助理解:

例1:模糊性

对于12期信贷产品,如果设定表现期为前6期,S6D15(前6期中,任意一期逾期超15天)就是1,否则为0;但后来如果把表现期调整为3期,那么对于**“前3期都正常还款,但4~6期才发生逾期并超过15天”**的这部分样本,原本所定义的label就从1变成了0.因此业务需求不同,导致标签的定义不是绝对的。所以说,好坏样本定义一定要根据实际业务需求来,要在对业务进行充分理解与分析的基础上进行确定,而不是拍脑袋而为之。

例2:连续性

定义首期逾期超30天为1,否则为0。但是,逾期29天与逾期31天的用户之间其实并没有不可跨越的硬间隔,逾期29天的用户可能会进一步恶化为逾期31天。

由于逾期严重程度定义本身就带有一定的主观色彩,我们很难说逾期天数差几天有多少本质差异,所以哪怕我们为了转化为分类问题做了硬性的1和0的界限定义,但业务上理解还是一个连续问题。

因此,在风控中,y的定义并不是非黑即白(离散型),而用概率分布(连续型)衡量或许更合理。

那么,为什么选择KS指标呢?KS倾向于从概率角度衡量正负样本之间的差异,正是因为正负样本之间的模糊性与连续性,所以KS也是一条连续曲线。但最终为什么取一个最大值,主要原因是提取KS曲线中的的一个显著特征,从而便于相互比较。

以上就是python算法深入理解风控中的KS原理的详细内容,更多关于python算法风控KS原理的资料请关注我们其它相关文章!

(0)

相关推荐

  • python数据可视化JupyterLab实用扩展程序Mito

    目录 遇见 Mito 如何启动 Mito 数据透视表 Mito 令人印象深刻的功能 可视化数据 自动代码生成 Mito 安装 JupyterLab 是 Jupyter 主打的最新数据科学生产工具,某种意义上,它的出现是为了取代Jupyter Notebook. 它作为一种基于 web 的集成开发环境,你可以使用它编写notebook.操作终端.编辑markdown文本.打开交互模式.查看csv文件及图片等功能. JupyterLab 最棒的体验就是有丰富的扩展插件,我记得过去我们不得不依赖 nu

  • pyCaret效率倍增开源低代码的python机器学习工具

    目录 PyCaret 时间序列模块 加载数据 初始化设置 统计测试 探索性数据分析 模型训练和选择 保存模型 PyCaret 是一个开源.低代码的 Python 机器学习库,可自动执行机器学习工作流.它是一种端到端的机器学习和模型管理工具,可以以指数方式加快实验周期并提高您的工作效率.欢迎收藏学习,喜欢点赞支持,文末提供技术交流群. 与其他开源机器学习库相比,PyCaret 是一个替代的低代码库,可用于仅用几行代码替换数百行代码. 这使得实验速度和效率呈指数级增长. PyCaret 本质上是围绕

  • 推荐一款高效的python数据框处理工具Sidetable

    目录 安装 用法 1.freq() 2.Counts 3.missing() 4.subtotal() 结论 我们知道 Pandas 是数据科学社区中流行的 Python 包,它包含许多函数和方法来分析数据.尽管它的功能对于数据分析来说足够有效,但定制的库可以为 Pandas 增加更多的价值. Sidetable 就是一个开源 Python 库,它是一种可用于数据分析和探索的工具,作为 value_counts 和 crosstab 的功能组合使用的.在本文中,我们将更多地讨论和探索其功能.欢迎

  • python机器学习使数据更鲜活的可视化工具Pandas_Alive

    目录 安装方法 使用说明 支持示例展示 水平条形图 垂直条形图比赛 条形图 饼图 多边形地理空间图 多个图表 总结 数据动画可视化制作在日常工作中是非常实用的一项技能.目前支持动画可视化的库主要以Matplotlib-Animation为主,其特点为:配置复杂,保存动图容易报错. 安装方法 pip install pandas_alive # 或者 conda install pandas_alive -c conda-forge 使用说明 pandas_alive 的设计灵感来自 bar_ch

  • python算法深入理解风控中的KS原理

    目录 一.业务背景 二.直观理解区分度的概念 三.KS统计量的定义 四.KS计算过程及业务分析 KS常用的计算方法: 上标指标计算逻辑: 五.风控中选择KS的原因 例1:模糊性 例2:连续性 一.业务背景 在金融风控领域,常常使用KS指标来衡量评估模型的区分度(discrimination),这也是风控模型最为追求的指标之一.下面将从区分度概念.KS计算方法.业务指导意义.几何解析.数学思想等角度,对KS进行深入剖析. 二.直观理解区分度的概念 在数据探索中,若想大致判断自变量x对因变量y有没有

  • Python使用Dijkstra算法实现求解图中最短路径距离问题详解

    本文实例讲述了Python使用Dijkstra算法实现求解图中最短路径距离问题.分享给大家供大家参考,具体如下: 这里继续前面一篇<Python基于Floyd算法求解最短路径距离问题>的内容,这里要做的是Dijkstra算法,与Floyd算法类似,二者的用途均为求解最短路径距离,在图中有着广泛的应用,二者的原理都是老生常谈了,毕竟本科学习数据结构的同学是不可能不学习这两个算法的,所以在这里我也不再累赘,只简单概述一下这个算法的核心思想: Dijkstra算法的输入有两个参数,一个是原始的数据矩

  • Python算法中的时间复杂度问题

    在实现算法的时候,通常会从两方面考虑算法的复杂度,即时间复杂度和空间复杂度.顾名思义,时间复杂度用于度量算法的计算工作量,空间复杂度用于度量算法占用的内存空间. 本文将从时间复杂度的概念出发,结合实际代码示例分析算法的时间复杂度. 渐进时间复杂度 时间复杂度是算法运算所消耗的时间,因为不同大小的输入数据,算法处理所要消耗的时间是不同的,因此评估一个算运行时间是比较困难的,所以通常关注的是时间频度,即算法运行计算操作的次数,记为T(n),其中n称为问题的规模. 同样,因为n是一个变量,n发生变化时

  • python 密码学示例——理解哈希(Hash)算法

    Hash 是密码学安全性的基石,它引入了单向函数(one-way function)和指纹(fingerprint)的概念.即: 对于任意输入,都可以产生相同的.唯一的输出值 输出值中不包含输入值的任何线索 一.保密性(confidentiality)与完整性(integrity) 简单来说,信息的保密性确保除授权人员以外的任何人都无法读取该消息,信息的完整性则确保除授权人员以外的任何人都无法修改该消息. 很多时候一段加密的消息无法被他人读取和理解(保密性),并不意味着该密文不会在传播过程中被截

  • Python光学仿真学习衍射算法初步理解

    对衍射最经典的解释是Huygens-Fresnel原理,Huygens认为波阵面上每一点都会成为新的波源,这些子波源的相互干涉就形成了衍射.这显然是一种离散的观点,仿佛是专门为程序员准备的一样. 假设一束光打在一个方形孔上,这个方形孔被细分成 n×n个网格,那么每个网格都相当于是一个小孔,而这些小孔的互相干涉,即为衍射.随着网格不断被细分,最终可以逼近真实的衍射情形.那么,假设矩孔处为等相位面,其网格坐标为  (i,j),到衍射屏距离为 d d d,那么对于衍射屏上任意一点P(x,y),其光强为

  • Python算法思想集结深入理解动态规划

    目录 1. 概述 什么是重叠子问题 动态规划与分治算法的区别 什么最优子结构 2. 流程 2.1 是否存在子问题 2.2 是否存在重叠子问题 怎么解决重叠子问题 2.3 状态转移 3.总结 1. 概述 动态规划算法应用非常之广泛. 对于算法学习者而言,不跨过动态规划这道门,不算真正了解算法. 初接触动态规划者,理解其思想精髓会存在一定的难度,本文将通过一个案例,抽丝剥茧般和大家聊聊动态规划. 动态规划算法有 3 个重要的概念: 重叠子问题. 最优子结构. 状态转移. 只有吃透这 3 个概念,才叫

  • Python实现在某个数组中查找一个值的算法示例

    第一种算法思路: 第一步:随机出来一个数组的下标 第二步:判断下标对应的值是否等于被查找的值,是的话终止,已找到,否的话转第三步. 第三步:判断是否随机完数组的所有下标,是的话终止,没找到,否的话转第一步. 代码如下: #本程序的功能是在字典中查找存在某个值 import random di = {'a':1,'b':2,'c':3,'d':4,'e':5,'f':6} key = 2 di1 = {} while True: tmp = random.choice(di.keys()) #随机

  • Python机器学习之scikit-learn库中KNN算法的封装与使用方法

    本文实例讲述了Python机器学习之scikit-learn库中KNN算法的封装与使用方法.分享给大家供大家参考,具体如下: 1.工具准备,python环境,pycharm 2.在机器学习中,KNN是不需要训练过程的算法,也就是说,输入样例可以直接调用predict预测结果,训练数据集就是模型.当然这里必须将训练数据和训练标签进行拟合才能形成模型. 3.在pycharm中创建新的项目工程,并在项目下新建KNN.py文件. import numpy as np from math import s

  • Python算法之图的遍历

    本节主要介绍图的遍历算法BFS和DFS,以及寻找图的(强)连通分量的算法 Traversal就是遍历,主要是对图的遍历,也就是遍历图中的每个节点.对一个节点的遍历有两个阶段,首先是发现(discover),然后是访问(visit).遍历的重要性自然不必说,图中有几个算法和遍历没有关系?! [算法导论对于发现和访问区别的非常明显,对图的算法讲解地特别好,在遍历节点的时候给节点标注它的发现节点时间d[v]和结束访问时间f[v],然后由这些时间的一些规律得到了不少实用的定理,本节后面介绍了部分内容,感

  • python算法与数据结构之冒泡排序实例详解

    一.冒泡排序介绍 冒泡排序(英语:Bubble Sort)是一种简单的排序算法.它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.遍历数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成.这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端. 二.冒泡排序原理 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素做同样的工作,从开始第一对到结尾的最后一对.这一步做完,最后的元素应该会是最大的数. 针对所有的

随机推荐