详解Java多线程编程中互斥锁ReentrantLock类的用法

0.关于互斥锁

所谓互斥锁, 指的是一次最多只能有一个线程持有的锁. 在jdk1.5之前, 我们通常使用synchronized机制控制多个线程对共享资源的访问. 而现在, Lock提供了比synchronized机制更广泛的锁定操作, Lock和synchronized机制的主要区别:
synchronized机制提供了对与每个对象相关的隐式监视器锁的访问, 并强制所有锁获取和释放均要出现在一个块结构中, 当获取了多个锁时, 它们必须以相反的顺序释放. synchronized机制对锁的释放是隐式的, 只要线程运行的代码超出了synchronized语句块范围, 锁就会被释放. 而Lock机制必须显式的调用Lock对象的unlock()方法才能释放锁, 这为获取锁和释放锁不出现在同一个块结构中, 以及以更自由的顺序释放锁提供了可能。

1. ReentrantLock介绍
ReentrantLock是一个可重入的互斥锁,又被称为“独占锁”。
顾名思义,ReentrantLock锁在同一个时间点只能被一个线程锁持有;而可重入的意思是,ReentrantLock锁,可以被单个线程多次获取。
ReentrantLock分为“公平锁”和“非公平锁”。它们的区别体现在获取锁的机制上是否公平。“锁”是为了保护竞争资源,防止多个线程同时操作线程而出错,ReentrantLock在同一个时间点只能被一个线程获取(当某线程获取到“锁”时,其它线程就必须等待);ReentraantLock是通过一个FIFO的等待队列来管理获取该锁所有线程的。在“公平锁”的机制下,线程依次排队获取锁;而“非公平锁”在锁是可获取状态时,不管自己是不是在队列的开头都会获取锁。

ReentrantLock函数列表

// 创建一个 ReentrantLock ,默认是“非公平锁”。
ReentrantLock()
// 创建策略是fair的 ReentrantLock。fair为true表示是公平锁,fair为false表示是非公平锁。
ReentrantLock(boolean fair)

// 查询当前线程保持此锁的次数。
int getHoldCount()
// 返回目前拥有此锁的线程,如果此锁不被任何线程拥有,则返回 null。
protected Thread getOwner()
// 返回一个 collection,它包含可能正等待获取此锁的线程。
protected Collection<Thread> getQueuedThreads()
// 返回正等待获取此锁的线程估计数。
int getQueueLength()
// 返回一个 collection,它包含可能正在等待与此锁相关给定条件的那些线程。
protected Collection<Thread> getWaitingThreads(Condition condition)
// 返回等待与此锁相关的给定条件的线程估计数。
int getWaitQueueLength(Condition condition)
// 查询给定线程是否正在等待获取此锁。
boolean hasQueuedThread(Thread thread)
// 查询是否有些线程正在等待获取此锁。
boolean hasQueuedThreads()
// 查询是否有些线程正在等待与此锁有关的给定条件。
boolean hasWaiters(Condition condition)
// 如果是“公平锁”返回true,否则返回false。
boolean isFair()
// 查询当前线程是否保持此锁。
boolean isHeldByCurrentThread()
// 查询此锁是否由任意线程保持。
boolean isLocked()
// 获取锁。
void lock()
// 如果当前线程未被中断,则获取锁。
void lockInterruptibly()
// 返回用来与此 Lock 实例一起使用的 Condition 实例。
Condition newCondition()
// 仅在调用时锁未被另一个线程保持的情况下,才获取该锁。
boolean tryLock()
// 如果锁在给定等待时间内没有被另一个线程保持,且当前线程未被中断,则获取该锁。
boolean tryLock(long timeout, TimeUnit unit)
// 试图释放此锁。
void unlock()

2. ReentrantLock示例
通过对比“示例1”和“示例2”,我们能够清晰的认识lock和unlock的作用
2.1 示例1

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

// LockTest1.java
// 仓库
class Depot {
 private int size;  // 仓库的实际数量
 private Lock lock;  // 独占锁

 public Depot() {
  this.size = 0;
  this.lock = new ReentrantLock();
 }

 public void produce(int val) {
  lock.lock();
  try {
   size += val;
   System.out.printf("%s produce(%d) --> size=%d\n",
     Thread.currentThread().getName(), val, size);
  } finally {
   lock.unlock();
  }
 }

 public void consume(int val) {
  lock.lock();
  try {
   size -= val;
   System.out.printf("%s consume(%d) <-- size=%d\n",
     Thread.currentThread().getName(), val, size);
  } finally {
   lock.unlock();
  }
 }
}; 

// 生产者
class Producer {
 private Depot depot;

 public Producer(Depot depot) {
  this.depot = depot;
 }

 // 消费产品:新建一个线程向仓库中生产产品。
 public void produce(final int val) {
  new Thread() {
   public void run() {
    depot.produce(val);
   }
  }.start();
 }
}

// 消费者
class Customer {
 private Depot depot;

 public Customer(Depot depot) {
  this.depot = depot;
 }

 // 消费产品:新建一个线程从仓库中消费产品。
 public void consume(final int val) {
  new Thread() {
   public void run() {
    depot.consume(val);
   }
  }.start();
 }
}

public class LockTest1 {
 public static void main(String[] args) {
  Depot mDepot = new Depot();
  Producer mPro = new Producer(mDepot);
  Customer mCus = new Customer(mDepot);

  mPro.produce(60);
  mPro.produce(120);
  mCus.consume(90);
  mCus.consume(150);
  mPro.produce(110);
 }
}

运行结果:

Thread-0 produce(60) --> size=60
Thread-1 produce(120) --> size=180
Thread-3 consume(150) <-- size=30
Thread-2 consume(90) <-- size=-60
Thread-4 produce(110) --> size=50

结果分析:
(1) Depot 是个仓库。通过produce()能往仓库中生产货物,通过consume()能消费仓库中的货物。通过独占锁lock实现对仓库的互斥访问:在操作(生产/消费)仓库中货品前,会先通过lock()锁住仓库,操作完之后再通过unlock()解锁。
(2) Producer是生产者类。调用Producer中的produce()函数可以新建一个线程往仓库中生产产品。
(3) Customer是消费者类。调用Customer中的consume()函数可以新建一个线程消费仓库中的产品。
(4) 在主线程main中,我们会新建1个生产者mPro,同时新建1个消费者mCus。它们分别向仓库中生产/消费产品。
根据main中的生产/消费数量,仓库最终剩余的产品应该是50。运行结果是符合我们预期的!
这个模型存在两个问题:
(1) 现实中,仓库的容量不可能为负数。但是,此模型中的仓库容量可以为负数,这与现实相矛盾!
(2) 现实中,仓库的容量是有限制的。但是,此模型中的容量确实没有限制的!
这两个问题,我们稍微会讲到如何解决。现在,先看个简单的示例2;通过对比“示例1”和“示例2”,我们能更清晰的认识lock(),unlock()的用途。

2.2 示例2

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

// LockTest2.java
// 仓库
class Depot {
  private int size;    // 仓库的实际数量
  private Lock lock;    // 独占锁

  public Depot() {
    this.size = 0;
    this.lock = new ReentrantLock();
  }

  public void produce(int val) {
//    lock.lock();
//    try {
      size += val;
      System.out.printf("%s produce(%d) --> size=%d\n",
          Thread.currentThread().getName(), val, size);
//    } catch (InterruptedException e) {
//    } finally {
//      lock.unlock();
//    }
  }

  public void consume(int val) {
//    lock.lock();
//    try {
      size -= val;
      System.out.printf("%s consume(%d) <-- size=%d\n",
          Thread.currentThread().getName(), val, size);
//    } finally {
//      lock.unlock();
//    }
  }
};

// 生产者
class Producer {
  private Depot depot;

  public Producer(Depot depot) {
    this.depot = depot;
  }

  // 消费产品:新建一个线程向仓库中生产产品。
  public void produce(final int val) {
    new Thread() {
      public void run() {
        depot.produce(val);
      }
    }.start();
  }
}

// 消费者
class Customer {
  private Depot depot;

  public Customer(Depot depot) {
    this.depot = depot;
  }

  // 消费产品:新建一个线程从仓库中消费产品。
  public void consume(final int val) {
    new Thread() {
      public void run() {
        depot.consume(val);
      }
    }.start();
  }
}

public class LockTest2 {
  public static void main(String[] args) {
    Depot mDepot = new Depot();
    Producer mPro = new Producer(mDepot);
    Customer mCus = new Customer(mDepot);

    mPro.produce(60);
    mPro.produce(120);
    mCus.consume(90);
    mCus.consume(150);
    mPro.produce(110);
  }
}

(某一次)运行结果:

Thread-0 produce(60) --> size=-60
Thread-4 produce(110) --> size=50
Thread-2 consume(90) <-- size=-60
Thread-1 produce(120) --> size=-60
Thread-3 consume(150) <-- size=-60

结果说明:
“示例2”在“示例1”的基础上去掉了lock锁。在“示例2”中,仓库中最终剩余的产品是-60,而不是我们期望的50。原因是我们没有实现对仓库的互斥访问。

2.3 示例3
在“示例3”中,我们通过Condition去解决“示例1”中的两个问题:“仓库的容量不可能为负数”以及“仓库的容量是有限制的”。
解决该问题是通过Condition。Condition是需要和Lock联合使用的:通过Condition中的await()方法,能让线程阻塞[类似于wait()];通过Condition的signal()方法,能让唤醒线程[类似于notify()]。

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.Condition;

// LockTest3.java
// 仓库
class Depot {
  private int capacity;  // 仓库的容量
  private int size;    // 仓库的实际数量
  private Lock lock;    // 独占锁
  private Condition fullCondtion;      // 生产条件
  private Condition emptyCondtion;    // 消费条件

  public Depot(int capacity) {
    this.capacity = capacity;
    this.size = 0;
    this.lock = new ReentrantLock();
    this.fullCondtion = lock.newCondition();
    this.emptyCondtion = lock.newCondition();
  }

  public void produce(int val) {
    lock.lock();
    try {
       // left 表示“想要生产的数量”(有可能生产量太多,需多此生产)
      int left = val;
      while (left > 0) {
        // 库存已满时,等待“消费者”消费产品。
        while (size >= capacity)
          fullCondtion.await();
        // 获取“实际生产的数量”(即库存中新增的数量)
        // 如果“库存”+“想要生产的数量”>“总的容量”,则“实际增量”=“总的容量”-“当前容量”。(此时填满仓库)
        // 否则“实际增量”=“想要生产的数量”
        int inc = (size+left)>capacity ? (capacity-size) : left;
        size += inc;
        left -= inc;
        System.out.printf("%s produce(%3d) --> left=%3d, inc=%3d, size=%3d\n",
            Thread.currentThread().getName(), val, left, inc, size);
        // 通知“消费者”可以消费了。
        emptyCondtion.signal();
      }
    } catch (InterruptedException e) {
    } finally {
      lock.unlock();
    }
  }

  public void consume(int val) {
    lock.lock();
    try {
      // left 表示“客户要消费数量”(有可能消费量太大,库存不够,需多此消费)
      int left = val;
      while (left > 0) {
        // 库存为0时,等待“生产者”生产产品。
        while (size <= 0)
          emptyCondtion.await();
        // 获取“实际消费的数量”(即库存中实际减少的数量)
        // 如果“库存”<“客户要消费的数量”,则“实际消费量”=“库存”;
        // 否则,“实际消费量”=“客户要消费的数量”。
        int dec = (size<left) ? size : left;
        size -= dec;
        left -= dec;
        System.out.printf("%s consume(%3d) <-- left=%3d, dec=%3d, size=%3d\n",
            Thread.currentThread().getName(), val, left, dec, size);
        fullCondtion.signal();
      }
    } catch (InterruptedException e) {
    } finally {
      lock.unlock();
    }
  }

  public String toString() {
    return "capacity:"+capacity+", actual size:"+size;
  }
};

// 生产者
class Producer {
  private Depot depot;

  public Producer(Depot depot) {
    this.depot = depot;
  }

  // 消费产品:新建一个线程向仓库中生产产品。
  public void produce(final int val) {
    new Thread() {
      public void run() {
        depot.produce(val);
      }
    }.start();
  }
}

// 消费者
class Customer {
  private Depot depot;

  public Customer(Depot depot) {
    this.depot = depot;
  }

  // 消费产品:新建一个线程从仓库中消费产品。
  public void consume(final int val) {
    new Thread() {
      public void run() {
        depot.consume(val);
      }
    }.start();
  }
}

public class LockTest3 {
  public static void main(String[] args) {
    Depot mDepot = new Depot(100);
    Producer mPro = new Producer(mDepot);
    Customer mCus = new Customer(mDepot);

    mPro.produce(60);
    mPro.produce(120);
    mCus.consume(90);
    mCus.consume(150);
    mPro.produce(110);
  }
}

(某一次)运行结果:

Thread-0 produce( 60) --> left= 0, inc= 60, size= 60
Thread-1 produce(120) --> left= 80, inc= 40, size=100
Thread-2 consume( 90) <-- left= 0, dec= 90, size= 10
Thread-3 consume(150) <-- left=140, dec= 10, size= 0
Thread-4 produce(110) --> left= 10, inc=100, size=100
Thread-3 consume(150) <-- left= 40, dec=100, size= 0
Thread-4 produce(110) --> left= 0, inc= 10, size= 10
Thread-3 consume(150) <-- left= 30, dec= 10, size= 0
Thread-1 produce(120) --> left= 0, inc= 80, size= 80
Thread-3 consume(150) <-- left= 0, dec= 30, size= 50
(0)

相关推荐

  • 浅谈互斥锁为什么还要和条件变量配合使用

    mutex体现的是一种竞争,我离开了,通知你进来. cond体现的是一种协作,我准备好了,通知你开始吧. 互斥锁一个明显的缺点是它只有两种状态:锁定和非锁定.而条件变量通过允许线程阻塞和等待另一个线程发送信号的方法弥补了互斥锁的不足,它常和互斥锁一起配合使用.使用时,条件变量被用来阻塞一个线程,当条件不满足时,线程往往解开相应的互斥锁并等待条件发生变化.一旦其他的某个线程改变了条件变量,他将通知相应的条件变量唤醒一个或多个正被此条件变量阻塞的线程.这些线程将重新锁定互斥锁并重新测试条件是否满足.

  • Java互斥锁简单实例

    本文实例讲述了Java互斥锁.分享给大家供大家参考.具体分析如下: 互斥锁,常常用于多个线程访问独占式资源,比如多个线程同时写一个文件,虽然互斥访问方式不够高效,但是对于一些应用场景却很有意义 //没有互斥锁的情况(可以自己跑跑看运行结果): public class LockDemo { // private static Object lock = new Object(); // static确保只有一把锁 private int i = 0; public void increaseI(

  • 详解java中的互斥锁信号量和多线程等待机制

    互斥锁和信号量都是操作系统中为并发编程设计基本概念,互斥锁和信号量的概念上的不同在于,对于同一个资源,互斥锁只有0和1 的概念,而信号量不止于此.也就是说,信号量可以使资源同时被多个线程访问,而互斥锁同时只能被一个线程访问 互斥锁在java中的实现就是 ReetranLock , 在访问一个同步资源时,它的对象需要通过方法 tryLock() 获得这个锁,如果失败,返回 false,成功返回true.根据返回的信息来判断是否要访问这个被同步的资源.看下面的例子 public class Reen

  • Java多线程并发编程(互斥锁Reentrant Lock)

    Java 中的锁通常分为两种: 通过关键字 synchronized 获取的锁,我们称为同步锁,上一篇有介绍到:Java 多线程并发编程 Synchronized 关键字. java.util.concurrent(JUC)包里的锁,如通过继承接口 Lock 而实现的 ReentrantLock(互斥锁),继承 ReadWriteLock 实现的 ReentrantReadWriteLock(读写锁). 本篇主要介绍 ReentrantLock(互斥锁). ReentrantLock(互斥锁)

  • 详解Java多线程编程中互斥锁ReentrantLock类的用法

    0.关于互斥锁 所谓互斥锁, 指的是一次最多只能有一个线程持有的锁. 在jdk1.5之前, 我们通常使用synchronized机制控制多个线程对共享资源的访问. 而现在, Lock提供了比synchronized机制更广泛的锁定操作, Lock和synchronized机制的主要区别: synchronized机制提供了对与每个对象相关的隐式监视器锁的访问, 并强制所有锁获取和释放均要出现在一个块结构中, 当获取了多个锁时, 它们必须以相反的顺序释放. synchronized机制对锁的释放是

  • 详解Java多线程编程中的线程同步方法

    1.多线程的同步: 1.1.同步机制: 在多线程中,可能有多个线程试图访问一个有限的资源,必须预防这种情况的发生.所以引入了同步机制:在线程使用一个资源时为其加锁,这样其他的线程便不能访问那个资源了,直到解锁后才可以访问. 1.2.共享成员变量的例子: 成员变量与局部变量: 成员变量: 如果一个变量是成员变量,那么多个线程对同一个对象的成员变量进行操作,这多个线程是共享一个成员变量的. 局部变量: 如果一个变量是局部变量,那么多个线程对同一个对象进行操作,每个线程都会有一个该局部变量的拷贝.他们

  • 详解Java多线程编程中LockSupport类的线程阻塞用法

    LockSupport是用来创建锁和其他同步类的基本线程阻塞原语. LockSupport中的park() 和 unpark() 的作用分别是阻塞线程和解除阻塞线程,而且park()和unpark()不会遇到"Thread.suspend 和 Thread.resume所可能引发的死锁"问题. 因为park() 和 unpark()有许可的存在:调用 park() 的线程和另一个试图将其 unpark() 的线程之间的竞争将保持活性. 基本用法 LockSupport 很类似于二元信号

  • 详解Java多线程编程中线程的启动、中断或终止操作

    线程启动: 1.start() 和 run()的区别说明 start() : 它的作用是启动一个新线程,新线程会执行相应的run()方法.start()不能被重复调用. run() : run()就和普通的成员方法一样,可以被重复调用.单独调用run()的话,会在当前线程中执行run(),而并不会启动新线程! 下面以代码来进行说明. class MyThread extends Thread{ public void run(){ ... } }; MyThread mythread = new

  • 详解Java多线程编程中CountDownLatch阻塞线程的方法

    直译过来就是倒计数(CountDown)门闩(Latch).倒计数不用说,门闩的意思顾名思义就是阻止前进.在这里就是指 CountDownLatch.await() 方法在倒计数为0之前会阻塞当前线程. CountDownLatch是一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待. CountDownLatch 的作用和 Thread.join() 方法类似,可用于一组线程和另外一组线程的协作.例如,主线程在做一项工作之前需要一系列的准备工作,只有这些准备工

  • 详解Java并发编程之内置锁(synchronized)

    简介 synchronized在JDK5.0的早期版本中是重量级锁,效率很低,但从JDK6.0开始,JDK在关键字synchronized上做了大量的优化,如偏向锁.轻量级锁等,使它的效率有了很大的提升. synchronized的作用是实现线程间的同步,当多个线程都需要访问共享代码区域时,对共享代码区域进行加锁,使得每一次只能有一个线程访问共享代码区域,从而保证线程间的安全性. 因为没有显式的加锁和解锁过程,所以称之为隐式锁,也叫作内置锁.监视器锁. 如下实例,在没有使用synchronize

  • 详解java并发之重入锁-ReentrantLock

    前言 目前主流的锁有两种,一种是synchronized,另一种就是ReentrantLock,JDK优化到现在目前为止synchronized的性能已经和重入锁不分伯仲了,但是重入锁的功能和灵活性要比这个关键字多的多,所以重入锁是可以完全替代synchronized关键字的.下面就来介绍这个重入锁. 正文 ReentrantLock重入锁是Lock接口里最重要的实现,也是在实际开发中应用最多的一个,我这篇文章更接近实际开发的应用场景,为开发者提供直接上手应用.所以不是所有方法我都讲解,有些冷门

  • 详解Java设计模式编程中的策略模式

    定义:定义一组算法,将每个算法都封装起来,并且使他们之间可以互换. 类型:行为类模式 类图: 策略模式是对算法的封装,把一系列的算法分别封装到对应的类中,并且这些类实现相同的接口,相互之间可以替换.在前面说过的行为类模式中,有一种模式也是关注对算法的封装--模版方法模式,对照类图可以看到,策略模式与模版方法模式的区别仅仅是多了一个单独的封装类Context,它与模版方法模式的区别在于:在模版方法模式中,调用算法的主体在抽象的父类中,而在策略模式中,调用算法的主体则是封装到了封装类Context中

  • Java多线程编程中线程锁与读写锁的使用示例

    线程锁Lock Lock  相当于 当前对象的 Synchronized import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /* * Lock lock = new ReentrantLock(); * lock.lock(); lock.unLock(); * 类似于 synchronized,但不能与synchronized 混用 */ public class L

  • 详解Java设计模式编程中的依赖倒置原则

    定义: 高层模块不应该依赖低层模块,二者都应该依赖其抽象:抽象不应该依赖细节:细节应该依赖抽象. 问题由来:类A直接依赖类B,假如要将类A改为依赖类C,则必须通过修改类A的代码来达成.这种场景下,类A一般是高层模块,负责复杂的业务逻辑:类B和类C是低层模块,负责基本的原子操作:假如修改类A,会给程序带来不必要的风险. 解决方案:将类A修改为依赖接口I,类B和类C各自实现接口I,类A通过接口I间接与类B或者类C发生联系,则会大大降低修改类A的几率.          依赖倒置原则基于这样一个事实:

随机推荐