Python函数式编程指南(一):函数式编程概述

1. 函数式编程概述

1.1. 什么是函数式编程?

函数式编程使用一系列的函数解决问题。函数仅接受输入并产生输出,不包含任何能影响产生输出的内部状态。任何情况下,使用相同的参数调用函数始终能产生同样的结果。

在一个函数式的程序中,输入的数据“流过”一系列的函数,每一个函数根据它的输入产生输出。函数式风格避免编写有“边界效应”(side effects)的函数:修改内部状态,或者是其他无法反应在输出上的变化。完全没有边界效应的函数被称为“纯函数式的”(purely functional)。避免边界效应意味着不使用在程序运行时可变的数据结构,输出只依赖于输入。

可以认为函数式编程刚好站在了面向对象编程的对立面。对象通常包含内部状态(字段),和许多能修改这些状态的函数,程序则由不断修改状态构成;函数式编程则极力避免状态改动,并通过在函数间传递数据流进行工作。但这并不是说无法同时使用函数式编程和面向对象编程,事实上,复杂的系统一般会采用面向对象技术建模,但混合使用函数式风格还能让你额外享受函数式风格的优点。

1.2. 为什么使用函数式编程?

函数式的风格通常被认为有如下优点:

1.逻辑可证
这是一个学术上的优点:没有边界效应使得更容易从逻辑上证明程序是正确的(而不是通过测试)。
2.模块化
函数式编程推崇简单原则,一个函数只做一件事情,将大的功能拆分成尽可能小的模块。小的函数更易于阅读和检查错误。
3.组件化
小的函数更容易加以组合形成新的功能。
4.易于调试
细化的、定义清晰的函数使得调试更加简单。当程序不正常运行时,每一个函数都是检查数据是否正确的接口,能更快速地排除没有问题的代码,定位到出现问题的地方。
5.易于测试
不依赖于系统状态的函数无须在测试前构造测试桩,使得编写单元测试更加容易。
6.更高的生产率
函数式编程产生的代码比其他技术更少(往往是其他技术的一半左右),并且更容易阅读和维护。

1.3. 如何辨认函数式风格?

支持函数式编程的语言通常具有如下特征,大量使用这些特征的代码即可被认为是函数式的:

函数是一等公民

函数能作为参数传递,或者是作为返回值返回。这个特性使得模板方法模式非常易于编写,这也促使了这个模式被更频繁地使用。
以一个简单的集合排序为例,假设lst是一个数集,并拥有一个排序方法sort需要将如何确定顺序作为参数。
如果函数不能作为参数,那么lst的sort方法只能接受普通对象作为参数。这样一来我们需要首先定义一个接口,然后定义一个实现该接口的类,最后将该类的一个实例传给sort方法,由sort调用这个实例的compare方法,就像这样:

代码如下:

#伪代码
interface Comparator {
    compare(o1, o2)
}
lst = list(range(5))
lst.sort(Comparator() {
    compare(o1, o2) {
        return o2 - o1 //逆序
})

可见,我们定义了一个新的接口、新的类型(这里是一个匿名类),并new了一个新的对象只为了调用一个方法。如果这个方法可以直接作为参数传递会怎样呢?看起来应该像这样:

代码如下:

def compare(o1, o2):
    return o2 - o1 #逆序
lst = list(range(5))
lst.sort(compare)

请注意,前一段代码已经使用了匿名类技巧从而省下了不少代码,但仍然不如直接传递函数简单、自然。

匿名函数(lambda)

lambda提供了快速编写简单函数的能力。对于偶尔为之的行为,lambda让你不再需要在编码时跳转到其他位置去编写函数。
lambda表达式定义一个匿名的函数,如果这个函数仅在编码的位置使用到,你可以现场定义、直接使用:

代码如下:

lst.sort(lambda o1, o2: o1.compareTo(o2))

相信从这个小小的例子你也能感受到强大的生产效率:)

封装控制结构的内置模板函数

为了避开边界效应,函数式风格尽量避免使用变量,而仅仅为了控制流程而定义的循环变量和流程中产生的临时变量无疑是最需要避免的。
假如我们需要对刚才的数集进行过滤得到所有的正数,使用指令式风格的代码应该像是这样:

代码如下:

lst2 = list()
for i in range(len(lst)): #模拟经典for循环
    if lst[i] > 0:
        lst2.append(lst[i])

这段代码把从创建新列表、循环、取出元素、判断、添加至新列表的整个流程完整的展示了出来,俨然把解释器当成了需要手把手指导的傻瓜。然而,“过滤”这个动作是很常见的,为什么解释器不能掌握过滤的流程,而我们只需要告诉它过滤规则呢?
在Python里,过滤由一个名为filter的内置函数实现。有了这个函数,解释器就学会了如何“过滤”,而我们只需要把规则告诉它:

代码如下:

lst2 = filter(lambda n: n > 0, lst)

这个函数带来的好处不仅仅是少写了几行代码这么简单。
封装控制结构后,代码中就只需要描述功能而不是做法,这样的代码更清晰,更可读。因为避开了控制结构的干扰,第二段代码显然能让你更容易了解它的意图。
另外,因为避开了索引,使得代码中不太可能触发下标越界这种异常,除非你手动制造一个。

函数式编程语言通常封装了数个类似“过滤”这样的常见动作作为模板函数。唯一的缺点是这些函数需要少量的学习成本,但这绝对不能掩盖使用它们带来的好处。

闭包(closure)

闭包是绑定了外部作用域的变量(但不是全局变量)的函数。大部分情况下外部作用域指的是外部函数。

闭包包含了自身函数体和所需外部函数中的“变量名的引用”。引用变量名意味着绑定的是变量名,而不是变量实际指向的对象;如果给变量重新赋值,闭包中能访问到的将是新的值。

闭包使函数更加灵活和强大。即使程序运行至离开外部函数,如果闭包仍然可见,则被绑定的变量仍然有效;每次运行至外部函数,都会重新创建闭包,绑定的变量是不同的,不需要担心在旧的闭包中绑定的变量会被新的值覆盖。
回到刚才过滤数集的例子。假设过滤条件中的 0 这个边界值不再是固定的,而是由用户控制。如果没有闭包,那么代码必须修改为:

代码如下:

class greater_than_helper:
    def __init__(self, minval):
        self.minval = minval
    def is_greater_than(self, val):
        return val > self.minval
 
def my_filter(lst, minval):
    helper = greater_than_helper(minval)
    return filter(helper.is_greater_than, lst)

请注意我们现在已经为过滤功能编写了一个函数my_filter。如你所见,我们需要在别的地方(此例中是类greater_than_helper)持有另一个操作数minval。
如果支持闭包,因为闭包可以直接使用外部作用域的变量,我们就不再需要greater_than_helper了:

代码如下:

def my_filter(lst, minval):
    return filter(lambda n: n > minval, lst)

可见,闭包在不影响可读性的同时也省下了不少代码量。

函数式编程语言都提供了对闭包的不同程度的支持。在Python 2.x中,闭包无法修改绑定变量的值,所有修改绑定变量的行为都被看成新建了一个同名的局部变量并将绑定变量隐藏。Python 3.x中新加入了一个关键字 nonlocal 以支持修改绑定变量。但不管支持程度如何,你始终可以访问(读取)绑定变量。

内置的不可变数据结构

为了避开边界效应,不可变的数据结构是函数式编程中不可或缺的部分。不可变的数据结构保证数据的一致性,极大地降低了排查问题的难度。
例如,Python中的元组(tuple)就是不可变的,所有对元组的操作都不能改变元组的内容,所有试图修改元组内容的操作都会产生一个异常。
函数式编程语言一般会提供数据结构的两种版本(可变和不可变),并推荐使用不可变的版本。

递归

递归是另一种取代循环的方法。递归其实是函数式编程很常见的形式,经常可以在一些算法中见到。但之所以放到最后,是因为实际上我们一般很少用到递归。如果一个递归无法被编译器或解释器优化,很容易就会产生栈溢出;另一方面复杂的递归往往让人感觉迷惑,不如循环清晰,所以众多最佳实践均指出使用循环而非递归。

这一系列短文中都不会关注递归的使用。
<第一节完>

(0)

相关推荐

  • Python装饰器的函数式编程详解

    Python的装饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西.虽然好像,他们要干的事都很相似--都是想要对一个已有的模块做一些"修饰工作",所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能)侵入到原有的模块中的代码里去.但是OO的Decorator简直就是一场恶梦,不信你就去看看wikipedia上的词条

  • 利用Fn.py库在Python中进行函数式编程

    尽管Python事实上并不是一门纯函数式编程语言,但它本身是一门多范型语言,并给了你足够的自由利用函数式编程的便利.函数式风格有着各种理论与实际上的好处(你可以在Python的文档中找到这个列表): 形式上可证 模块性 组合性 易于调试及测试 虽然这份列表已经描述得够清楚了,但我还是很喜欢Michael O.Church在他的文章"函数式程序极少腐坏(Functional programs rarely rot)"中对函数式编程的优点所作的描述.我在PyCon UA 2012期间的讲座

  • Python函数式编程指南(四):生成器详解

    4. 生成器(generator) 4.1. 生成器简介 首先请确信,生成器就是一种迭代器.生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中.另外,对于生成器的特殊语法支持使得编写一个生成器比自定义一个常规的迭代器要简单不少,所以生成器也是最常用到的特性之一. 从Python 2.5开始,[PEP 342:通过增强生成器实现协同程序]的实现为生成器加入了更多的特性,这意味着生成器还可以完成更多的工作.这部分我们会在稍后的部分介绍. 4.2. 生成

  • 用Python进行基础的函数式编程的教程

    许多函数式文章讲述的是组合,流水线和高阶函数这样的抽象函数式技术.本文不同,它展示了人们每天编写的命令式,非函数式代码示例,以及将这些示例转换为函数式风格. 文章的第一部分将一些短小的数据转换循环重写成函数式的maps和reduces.第二部分选取长一点的循环,把他们分解成单元,然后把每个单元改成函数式的.第三部分选取一个很长的连续数据转换循环,然后把它分解成函数式流水线. 示例都是用Python写的,因为很多人觉得Python易读.为了证明函数式技术对许多语言来说都相同,许多示例避免使用Pyt

  • Python函数式编程指南(三):迭代器详解

    3. 迭代器 3.1. 迭代器(Iterator)概述 迭代器是访问集合内元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素都被访问一遍后结束. 迭代器不能回退,只能往前进行迭代.这并不是什么很大的缺点,因为人们几乎不需要在迭代途中进行回退操作. 迭代器也不是线程安全的,在多线程环境中对可变集合使用迭代器是一个危险的操作.但如果小心谨慎,或者干脆贯彻函数式思想坚持使用不可变的集合,那这也不是什么大问题. 对于原生支持随机访问的数据结构(如tuple.list),迭代器和经典fo

  • Python函数式编程指南(二):从函数开始

    2. 从函数开始 2.1. 定义一个函数 如下定义了一个求和函数: 复制代码 代码如下: def add(x, y):     return x + y 关于参数和返回值的语法细节可以参考其他文档,这里就略过了. 使用lambda可以定义简单的单行匿名函数.lambda的语法是: 复制代码 代码如下: lambda args: expression 参数(args)的语法与普通函数一样,同时表达式(expression)的值就是匿名函数调用的返回值:而lambda表达式返回这个匿名函数.如果我们

  • 实例讲解python函数式编程

    函数式编程是使用一系列函数去解决问题,按照一般编程思维,面对问题时我们的思考方式是"怎么干",而函数函数式编程的思考方式是我要"干什么". 至于函数式编程的特点暂不总结,我们直接拿例子来体会什么是函数式编程. lambda表达式(匿名函数): 普通函数与匿名函数的定义方式: 复制代码 代码如下: #普通函数def add(a,b):    return a + b print add(2,3) #匿名函数add = lambda a,b : a + bprint a

  • Python函数式编程

    主要内容 1.函数基本语法及特性 2.参数与局部变 3.返回值 4.递归 5.名函数 6.函数式编程介绍 7.阶函数 8.内置函数 函数基本语法及特性 定义 数学函数定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一 个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变 量,y是x的函数.自变量x的取值范围叫做这个函数的定义域. 但编程中的「函数」概念,与数学中的函数是有很 同的 函数是逻辑结构化和过程化的一种编程方法 函数的优点 减少重复代码 使程

  • Python函数式编程指南(一):函数式编程概述

    1. 函数式编程概述 1.1. 什么是函数式编程? 函数式编程使用一系列的函数解决问题.函数仅接受输入并产生输出,不包含任何能影响产生输出的内部状态.任何情况下,使用相同的参数调用函数始终能产生同样的结果. 在一个函数式的程序中,输入的数据"流过"一系列的函数,每一个函数根据它的输入产生输出.函数式风格避免编写有"边界效应"(side effects)的函数:修改内部状态,或者是其他无法反应在输出上的变化.完全没有边界效应的函数被称为"纯函数式的"

  • Python函数式编程指南:对生成器全面讲解

    生成器是迭代器,同时也并不仅仅是迭代器,不过迭代器之外的用途实在是不多,所以我们可以大声地说:生成器提供了非常方便的自定义迭代器的途径. 这是函数式编程指南的最后一篇,似乎拖了一个星期才写好,嗯-- 1. 生成器(generator) 1.1. 生成器简介 首先请确信,生成器就是一种迭代器.生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Python的for循环中.另外,对于生成器的特殊语法支持使得编写一个生成器比自定义一个常规的迭代器要简单不少,所以生成器也是最常用到的

  • 函数式JavaScript编程指南

    简介 你是否知道JavaScript其实也是一个函数式编程语言呢?本指南将教你如何利用JavaScript的函数式特性. 要求:你应当已经对JavaScript和DOM有了一个基本的了解. 写这篇指南的目的是因为关于JavaScript编程的资料太多了但是极少的资料提到了JavaScript的函数式特性.在本指南中,我只会讲解这些基本知识而不会深入其它的函数式语言或这是Lambda算子. 你可以点击所有的例子然后你所看到的代码就会被执行,这样就可以令指南变得具有交互性.你也可以使用这个沙箱来尝试

  • 使用Python的toolz库开始函数式编程的方法

    在这个由两部分组成的系列文章的第二部分中,我们将继续探索如何将函数式编程方法中的好想法引入到 Python中,以实现两全其美. 在上一篇文章中,我们介绍了不可变数据结构 . 这些数据结构使得我们可以编写"纯"函数,或者说是没有副作用的函数,仅仅接受一些参数并返回结果,同时保持良好的性能. 在这篇文章中,我们使用 toolz 库来构建. 这个库具有操作此类函数的函数,并且它们在纯函数中表现得特别好. 在函数式编程世界中,它们通常被称为"高阶函数",因为它们将函数作为参

  • js面向对象编程OOP及函数式编程FP区别

    目录 写在前面 javscript 中函数和对象的关系 面向对象编程(OOP) 继承 多态 封装 函数编程编程(FP) 闭包和高阶函数 柯里化 偏函数 组合和管道 函子 写在最后 写在前面 浏览下文我觉得还是要有些基础的!下文涉及的知识点太多,基本上每一个拿出来都能写几篇文章,我在写文章的过程中只是做了简单的实现,我只是提供了一个思路,更多的细节还是需要自己去钻研的,文章内容也不少,辛苦,如果有其他的看法或者意见,欢迎指点,最后纸上得来终觉浅,绝知此事要躬行 javscript 中函数和对象的关

  • Python中的套接字编程是什么?

    Why use Sockets? 套接字是网络的基础.它们使在两个不同程序或设备之间的信息传输成为可能.例如,当您打开浏览器时,您作为客户端正在与服务器建立连接以进行信息传输. 在深入探讨这种通信之前,让我们首先弄清楚这些插座的确切含义. What are Sockets? 一般而言,套接字是为发送和接收数据而构建的内部端点.单个网络将具有两个套接字,每个通信设备或程序一个.这些套接字是IP地址和端口的组合.根据所使用的端口号,单个设备可以具有n个插槽.不同的端口可用于不同类型的协议.请看以下图

  • 浅析Python中的套接字编程

    目录 一.为什么使用套接字 二.什么是套接字 三.如何在Python中实现Socket编程 四.什么是服务器 五.什么是客户端 5.1.Echo Client-Server 5.2.Multiple Communications 六.传输Python对象 6.1.Python pickle模块 6.2.如何使用pickle模块传递python对象结构 一.为什么使用套接字 套接字是网络的基础.它们使在两个不同程序或设备之间的信息传输成为可能.例如,当您打开浏览器时,您作为客户端正在与服务器建立连

  • Python光学仿真光的偏振编程理解学习

    目录 光的偏振 光的偏振 由于光波是横波,所以对于任意一个光波,其振幅方向与传播方向在一个固定的平面内.换言之,一束光波可以存在振幅方向不同的一群光波,对于其中一个光波而言,其振幅方向即为偏振方向. 可以画出其示意图 #偏振光演示 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D as axd def polarShow(): z = np.arange(0,5,0

随机推荐