实例讲解在C++的函数中变量参数及默认参数的使用

包含变量参数列表的函数
如果函数声明中最后一个成员是省略号 (...),则函数声明可采用数量可变的参数。在这些情况下,C++ 只为显式声明的参数提供类型检查。即使参数的数量和类型是可变的,在需要使函数泛化时也可使用变量参数列表。函数的系列是一个使用变量参数列表的函数的示例。printfargument-declaration-list
包含变量参数的函数
若要访问声明后的参数,请使用包含在标准包含文件 STDARG.H 中的宏(如下所述)。

采用数量可变的参数的函数声明至少需要一个占位符参数(即使不使用它)。如果未提供此占位符参数,则无法访问其余参数。
当 char 类型的参数作为变量参数进行传递时,它们将被转换为 int 类型。同样,当 float 类型的参数作为变量参数进行传递时,它们将被转换为 double 类型。其他类型的参数受常见整型和浮点型提升的限制。

使用参数列表中的省略号 (...) 来声明需要变量列表的函数。使用在 STDARG.H 包含文件中描述的类型与宏来访问变量列表所传递的参数。有关这些宏的详细信息,请参阅 va_arg、va_copy、va_end、va_start。(处于 C 运行时库文档中)。
以下示例演示如何将宏与类型一起使用(在 STDARG.H 中声明):va_listva_endva_argva_start

// variable_argument_lists.cpp
#include <stdio.h>
#include <stdarg.h>

// Declaration, but not definition, of ShowVar.
void ShowVar( char *szTypes, ... );
int main() {
  ShowVar( "fcsi", 32.4f, 'a', "Test string", 4 );
}

// ShowVar takes a format string of the form
//  "ifcs", where each character specifies the
//  type of the argument in that position.
//
// i = int
// f = float
// c = char
// s = string (char *)
//
// Following the format specification is a variable
// list of arguments. Each argument corresponds to
// a format character in the format string to which
// the szTypes parameter points
void ShowVar( char *szTypes, ... ) {
  va_list vl;
  int i;

  // szTypes is the last argument specified; you must access
  // all others using the variable-argument macros.
  va_start( vl, szTypes );

  // Step through the list.
  for( i = 0; szTypes[i] != '\0'; ++i ) {
   union Printable_t {
     int   i;
     float  f;
     char  c;
     char  *s;
   } Printable;

   switch( szTypes[i] ) {  // Type to expect.
     case 'i':
      Printable.i = va_arg( vl, int );
      printf_s( "%i\n", Printable.i );
     break;

     case 'f':
       Printable.f = va_arg( vl, double );
       printf_s( "%f\n", Printable.f );
     break;

     case 'c':
       Printable.c = va_arg( vl, char );
       printf_s( "%c\n", Printable.c );
     break;

     case 's':
       Printable.s = va_arg( vl, char * );
       printf_s( "%s\n", Printable.s );
     break;

     default:
     break;
   }
  }
  va_end( vl );
}
//Output:
// 32.400002
// a
// Test string

上一个示例演示以下重要概念:
在访问任何变量参数前,必须建立一个列表标记作为类型 va_list 的变量。在前面的示例中,该标记称为 vl。
使用 va_arg 宏访问各个参数。必须告知 va_arg 宏要检索的参数的类型,以便它可以从堆栈中传输正确的字节数。如果为 va_arg 指定的大小的类型与通过调用程序提供的类型不同,则结果是不可预知的。
应将使用 va_arg 宏获取的结果显式强制转换为所需类型。
必须调用宏以终止可变参数处理。va_end

默认参数
在许多情况下,函数具有不常使用的参数,因为使用默认值便已足够。为了解决此问题,默认参数工具允许为函数仅指定在给定调用中有意义的参数。为了阐释此概念,请考虑函数重载中所示的示例。

// Prototype three print functions.
int print( char *s );         // Print a string.
int print( double dvalue );      // Print a double.
int print( double dvalue, int prec ); // Print a double with a
// given precision.

在许多应用程序中,可为 prec 提供合理的默认值,从而消除对两个函数的需求:

// Prototype two print functions.
int print( char *s );          // Print a string.
int print( double dvalue, int prec=2 ); // Print a double with a
// given precision.

略微更改了 print 函数的实现以反映类型 double 仅存在一个此类函数这一事实:

// default_arguments.cpp
// compile with: /EHsc /c

// Print a double in specified precision.
// Positive numbers for precision indicate how many digits
// precision after the decimal point to show. Negative
// numbers for precision indicate where to round the number
// to the left of the decimal point.

#include <iostream>
#include <math.h>
using namespace std;

int print( double dvalue, int prec ) {
  // Use table-lookup for rounding/truncation.
  static const double rgPow10[] = {
   10E-7, 10E-6, 10E-5, 10E-4, 10E-3, 10E-2, 10E-1, 10E0,
     10E1, 10E2, 10E3, 10E4, 10E5, 10E6
  };
  const int iPowZero = 6;
  // If precision out of range, just print the number.
  if( prec >= -6 && prec <= 7 )
   // Scale, truncate, then rescale.
   dvalue = floor( dvalue / rgPow10[iPowZero - prec] ) *
   rgPow10[iPowZero - prec];
  cout << dvalue << endl;
  return cout.good();
}

若要调用新的 print 函数,请使用如下代码:

print( d );  // Precision of 2 supplied by default argument.
print( d, 0 ); // Override default argument to achieve other
// results.

使用默认参数时,请注意以下几点:
默认参数仅在其中省略了尾随参数的函数调用中使用 - 它们必须是最后的参数。因此,以下代码是非法的:

int print( double dvalue = 0.0, int prec );

默认参数不能在以后的声明中重新定义,即使重新定义的参数与原始参数相同也是如此。因此,以下代码将生成错误:

// Prototype for print function.
int print( double dvalue, int prec = 2 );

...

// Definition for print function.
int print( double dvalue, int prec = 2 )
{
...
}

此代码的问题在于定义中的函数声明重新定义了 prec 的默认参数。
以后的声明可添加额外的默认参数。
可为指向函数的指针提供默认参数。例如:

int (*pShowIntVal)( int i = 0 );
(0)

相关推荐

  • 深入理解C++编程中的局部变量和全局变量

    局部变量 在一个函数内部定义的变量是内部变量,它只在本函数范围内有效,也就是说只有在本函数内才能使用它们,在此函数以外是不能使用这些变量的.同样,在复合语句中定义的变量只在本复合语句范围内有效.这称为局部变量(local variable).如: 对局部变量的一些说明: 1) 主函数main中定义的变量(m, n)也只在主函数中有效,不会因为在主函数中定义而在整个文件或程序中有效.主函数也不能使用其他函数中定义的变量. 2) 不同函数中可以使用同名的变量,它们代表不同的对象,互不干扰.例如,在f

  • C++中的局部变量、全局变量、局部静态变量、全局静态变量的区别

    局部变量(Local variables)与 全局变量: 在子程序或代码块中定义的变量称为局部变量,在程序的一开始定义的变量称为全局变量. 全局变量作用域是整个程序,局部变量作用域是定义该变量的子程序或代码块. 当全局变量与局部变量同名时:在定义局部变量的子程序内,局部变量起作用:在其它地方全局变量起作用. 全局变量在程序开始运行期间就已经在内存中开辟了内存空间,直到程序结束才会释放这块内存空间. 全局变量要在其他文件中使用,需显示的声明这个变量,使用extern关键字声明(extern int

  • C++编程中变量的声明和定义以及预处理命令解析

    关于C++变量的声明和定义 我们已经知道,一个函数一般由两部分组成:声明部分和执行语句. 声明部分的作用是对有关的标识符(如变量?函数?结构体?共用体等)的属性进行说明.对于函数,声明和定义的区别是明显的,前边已说明,函数的声明是函数的原型,而函数的定义是函数功能的确立.对函数的声明是可以放在声明部分中的,而函数的定义显然不在函数的声明部分范围内,它是一个文件中的独立模块. 对变量而言,声明与定义的关系稍微复杂一些.在声明部分出现的变量有两种情况:一种是需要建立存储空间的(如int a;):另一

  • 详解C++中变量的初始化规则

    前言 定义没有初始化式的变量时,系统有时候会帮我们初始化变量. 系统如何初始化取决于变量的类型以及变量定义的位置. 内置类型变量是否自动初始化取决于变量定义的位置. 函数体外定义的变量初始成0:函数体内定义的变量不进行自动初始化.除了用作赋值操作的左操作数,其他任何使用未初始化变量的行为都是未定义的,不要依赖未定义行为. 以int类型为例,一段简单的测试代码: #include <iostream> using namespace std; int a; int main() { int b;

  • 详解C++中的指针结构体数组以及指向结构体变量的指针

    C++结构体数组 一个结构体变量中可以存放一组数据(如一个学生的学号.姓名.成绩等数据).如果有10个学生的数据需要参加运算,显然应该用数组,这就是结构体数组.结构体数组与以前介绍过的数值型数组的不同之处在于:每个数组元素都是一个结构体类型的数据,它们都分别包括各个成员项. 定义结构体数组和定义结构体变量的方法相仿,定义结构体数组时只需声明其为数组即可.如: struct Student //声明结构体类型Student { int num; char name[20]; char sex; i

  • C++中结构体的类型定义和初始化以及变量引用

    C++结构体类型的定义和初始化 有时需要将不同类型的数据组合成一个有机的整体,以供用户方便地使用.这些组合在一个整体中的数据是互相联系的.例如,一个学生的学号.姓名.性别.年龄.成绩.家庭地址等项,都是这个学生的属性,见图 可以看到学号(num).姓名(name).性别(sex).年龄(age).成绩(score ).地址(addr)是与姓名为"Li Fun"的学生有关的.如果在程序中将num,name,sex,age,score,addr分别定义为互相独立的变量,就难以反映出它们之间

  • 简单介绍C++中变量的引用

    什么是变量的引用 对一个数据可以使用"引用(reference)",这是C++对C的一个重要扩充,引用是一种新的变量类型,它的作用是为一个变量起一个别名.假如有一个变量a,想给它起一个别名b,可以这样写: int a; //定义a是整型变量 int &b=a; //声明b是a的引用 以上语句声明了b是a的引用,即b是a的别名.经过这样的声明后,a或b的作用相同,都代表同一变量. 注意: 在上述声明中,&是引用声明符,并不代表地址.不要理解为"把a的值赋给b的地

  • 深入理解C++中变量的存储类别和属性

    C++变量的存储类别(动态存储.静态存储.自动变量.寄存器变量.外部变量) 动态存储方式与静态存储方式 我们已经了解了变量的作用域.作用域是从空间的角度来分析的,分为全局变量和局部变量. 变量还有另一种属性--存储期(storage duration,也称生命期).存储期是指变量在内存中的存在期间.这是从变量值存在的时间角度来分析的.存储期可以分为静态存储期(static storage duration)和动态存储期(dynamic storage duration).这是由变量的静态存储方式

  • C++静态成员变量和静态成员函数的使用方法总结

    一.静态成员变量: 类体中的数据成员的声明前加上static关键字,该数据成员就成为了该类的静态数据成员.和其他数据成员一样,静态数据成员也遵守public/protected/private访问规则.同时,静态数据成员还具有以下特点: 1.静态数据成员的定义. 静态数据成员实际上是类域中的全局变量.所以,静态数据成员的定义(初始化)不应该被放在头文件中. 其定义方式与全局变量相同.举例如下: xxx.h文件 class base{ private: static const int _i;//

  • 深入解读C++中的指针变量

    指针变量是一种特殊的变量,它和以前学过的其他类型的变量的不同之处是:用它来指向另一个变量.为了表示指针变量和它所指向的变量之间的联系,在C++中用"*"符号表示指向,例如,i_pointer是一个指针变量,而*i_pointer表示i_pointer所指向的变量. 下面两个语句作用相同: i=3; *i_pointer=3; 定义指针变量 C++规定所有变量在使用前必须先定义,即指定其类型.在编译时按变量类型分配存储空间.对指针变量必须将它定义为指针类型.先看一个具体例子: int i

随机推荐