详解Python 爬取13个旅游城市,告诉你五一大家最爱去哪玩?

今年五一放了四天假,很多人不再只是选择周边游,因为时间充裕,选择了稍微远一点的景区,甚至出国游。各个景点成了人山人海,拥挤的人群,甚至去卫生间都要排队半天,那一刻我突然有点理解灭霸的行为了。

今天通过分析去哪儿网部分城市门票售卖情况,简单的分析一下哪些景点比较受欢迎,等下次假期可以做个参考。

抓取数据

通过请求https://piao.qunar.com/ticket/list.htm?keyword=北京,获取北京地区热门景区信息,再通过BeautifulSoup去分析提取出我们需要的信息。

这里爬取了前4页的景点信息,每页有15个景点。因为去哪儿并没有什么反爬措施,所以直接请求就可以了。

这里随机选择了13个热门城市:北京、上海、成都、三亚、广州、重庆、深圳、西安、杭州、厦门、武汉、大连、苏州。

并将爬取的数据存到了MongoDB数据库 。

爬虫部分完整代码如下:

import requests
from bs4 import BeautifulSoup
from pymongo import MongoClient

class QuNaEr():
  def __init__(self, keyword, page=1):
    self.keyword = keyword
    self.page = page

  def qne_spider(self):
    url = 'https://piao.qunar.com/ticket/list.htm?keyword=%s&region=&from=mpl_search_suggest&page=%s' % (self.keyword, self.page)
    response = requests.get(url)
    response.encoding = 'utf-8'
    text = response.text
    bs_obj = BeautifulSoup(text, 'html.parser')

    arr = bs_obj.find('div', {'class': 'result_list'}).contents
    for i in arr:
      info = i.attrs
      # 景区名称
      name = info.get('data-sight-name')
      # 地址
      address = info.get('data-address')
      # 近期售票数
      count = info.get('data-sale-count')
      # 经纬度
      point = info.get('data-point')

      # 起始价格
      price = i.find('span', {'class': 'sight_item_price'})
      price = price.find_all('em')
      price = price[0].text

      conn = MongoClient('localhost', port=27017)
      db = conn.QuNaEr # 库
      table = db.qunaer_51 # 表

      table.insert_one({
        'name'   :  name,
        'address'  :  address,
        'count'   :  int(count),
        'point'   :  point,
        'price'   :  float(price),
        'city'   :  self.keyword
      })
if __name__ == '__main__':
  citys = ['北京', '上海', '成都', '三亚', '广州', '重庆', '深圳', '西安', '杭州', '厦门', '武汉', '大连', '苏州']
  for i in citys:
    for page in range(1, 5):
      qne = QuNaEr(i, page=page)
      qne.qne_spider()

效果图如下:

有了数据,我们就可以分析出自己想要的东西了。

分析数据

1、最受欢迎的15个景区

由图可以看出,在选择的13个城市中,最热门的景区为上海的迪士尼乐园。

代码如下:

from pymongo import MongoClient
# 设置字体,不然无法显示中文
from pylab import *

mpl.rcParams['font.sans-serif'] = ['SimHei']

conn = MongoClient('localhost', port=27017)
db = conn.QuNaEr # 库
table = db.qunaer_51 # 表

result = table.find().sort([('count', -1)]).limit(15)
# x,y轴数据
x_arr = [] # 景区名称
y_arr = [] # 销量
for i in result:
  x_arr.append(i['name'])
  y_arr.append(i['count'])

"""
去哪儿月销量排行榜
"""
plt.bar(x_arr, y_arr, color='rgb') # 指定color,不然所有的柱体都会是一个颜色
plt.gcf().autofmt_xdate() # 旋转x轴,避免重叠
plt.xlabel(u'景点名称') # x轴描述信息
plt.ylabel(u'月销量') # y轴描述信息
plt.title(u'拉钩景点月销量统计表') # 指定图表描述信息
plt.ylim(0, 4000) # 指定Y轴的高度
plt.savefig('去哪儿月销售量排行榜') # 保存为图片
plt.show()

2、景区热力图

这里为了方便,只展示一下北京地区的景区热力图。用到了百度地图的开放平台。首先需要先注册开发者信息,首页底部有个申请秘钥的按钮,点击进行创建就可以了。我的应用类型选择的是浏览器端,因此只需要组装数据替换掉相应html代码即可。另外还需要将自己访问应用的AK替换掉。效果图如下:

3、景区价格

价格是出游第一个要考虑的,一开始想统计一下各城市的平均价格,但是后来发现效果不是很好,比如北京的刘老根大舞台价格在580元,这样拉高了平均价格。就好比姚明和潘长江的平均身高在190cm,并没有什么说服力。所以索性展示一下景区的价格分布。

根据价格设置了六个区间:

通过上图得知,大部分的景区门票价格都在200元以下。每次旅游花费基本都在交通、住宿、吃吃喝喝上了。门票占比还是比较少的。

实现代码如下:

arr = [[0, 50], [50,100], [100, 200], [200,300], [300,500], [500,1000]]
name_arr = []
total_arr = []
for i in arr:
  result = table.count({'price': {'$gte': i[0], '$lt': i[1]}})
  name = '%s元 ~ %s元 ' % (i[0], i[1])
  name_arr.append(name)
  total_arr.append(result)

color = 'red', 'orange', 'green', 'blue', 'gray', 'goldenrod' # 各类别颜色
explode = (0.2, 0, 0, 0, 0, 0) # 各类别的偏移半径

# 绘制饼状图
pie = plt.pie(total_arr, colors=color, explode=explode, labels=name_arr, shadow=True, autopct='%1.1f%%')

plt.axis('equal')
plt.title(u'热点旅游景区门票价格比例', fontsize=12)

plt.legend(loc=0, bbox_to_anchor=(0.82, 1)) # 图例
# 设置legend的字体大小
leg = plt.gca().get_legend()
ltext = leg.get_texts()
plt.setp(ltext, fontsize=6)
# 显示图
plt.show()

以上所述是小编给大家介绍的Python 爬取13个旅游城市详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对我们网站的支持!

(0)

相关推荐

  • Python爬虫实例_城市公交网络站点数据的爬取方法

    爬取的站点:http://beijing.8684.cn/ (1)环境配置,直接上代码: # -*- coding: utf-8 -*- import requests ##导入requests from bs4 import BeautifulSoup ##导入bs4中的BeautifulSoup import os headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML,

  • python爬虫爬取网页表格数据

    用python爬取网页表格数据,供大家参考,具体内容如下 from bs4 import BeautifulSoup import requests import csv import bs4 #检查url地址 def check_link(url): try: r = requests.get(url) r.raise_for_status() r.encoding = r.apparent_encoding return r.text except: print('无法链接服务器!!!')

  • python爬虫实战之爬取京东商城实例教程

    前言 本文主要介绍的是利用python爬取京东商城的方法,文中介绍的非常详细,下面话不多说了,来看看详细的介绍吧. 主要工具 scrapy BeautifulSoup requests 分析步骤 1.打开京东首页,输入裤子将会看到页面跳转到了这里,这就是我们要分析的起点 2.我们可以看到这个页面并不是完全的,当我们往下拉的时候将会看到图片在不停的加载,这就是ajax,但是当我们下拉到底的时候就会看到整个页面加载了60条裤子的信息,我们打开chrome的调试工具,查找页面元素时可以看到每条裤子的信

  • Python爬虫实例爬取网站搞笑段子

    众所周知,python是写爬虫的利器,今天作者用python写一个小爬虫爬下一个段子网站的众多段子. 目标段子网站为"http://ishuo.cn/",我们先分析其下段子的所在子页的url特点,可以轻易发现发现为"http://ishuo.cn/subject/"+数字, 经过测试发现,该网站的反扒机制薄弱,可以轻易地爬遍其所有站点. 现在利用python的re及urllib库将其所有段子扒下 import sys import re import urllib

  • Python爬取网页中的图片(搜狗图片)详解

    前言 最近几天,研究了一下一直很好奇的爬虫算法.这里写一下最近几天的点点心得.下面进入正文: 你可能需要的工作环境: Python 3.6官网下载 本地下载 我们这里以sogou作为爬取的对象. 首先我们进入搜狗图片http://pic.sogou.com/,进入壁纸分类(当然只是个例子Q_Q),因为如果需要爬取某网站资料,那么就要初步的了解它- 进去后就是这个啦,然后F12进入开发人员选项,笔者用的是Chrome. 右键图片>>检查 发现我们需要的图片src是在img标签下的,于是先试着用

  • Python爬虫:通过关键字爬取百度图片

    使用工具:Python2.7 点我下载 scrapy框架 sublime text3 一.搭建python(Windows版本)  1.安装python2.7 ---然后在cmd当中输入python,界面如下则安装成功  2.集成Scrapy框架----输入命令行:pip install Scrapy 安装成功界面如下: 失败的情况很多,举例一种: 解决方案: 其余错误可百度搜索. 二.开始编程. 1.爬取无反爬虫措施的静态网站.例如百度贴吧,豆瓣读书. 例如-<桌面吧>的一个帖子https:

  • python爬虫 正则表达式使用技巧及爬取个人博客的实例讲解

    这篇博客是自己<数据挖掘与分析>课程讲到正则表达式爬虫的相关内容,主要简单介绍Python正则表达式爬虫,同时讲述常见的正则表达式分析方法,最后通过实例爬取作者的个人博客网站.希望这篇基础文章对您有所帮助,如果文章中存在错误或不足之处,还请海涵.真的太忙了,太长时间没有写博客了,抱歉~ 一.正则表达式 正则表达式(Regular Expression,简称Regex或RE)又称为正规表示法或常规表示法,常常用来检索.替换那些符合某个模式的文本,它首先设定好了一些特殊的字及字符组合,通过组合的&

  • Python3实现的爬虫爬取数据并存入mysql数据库操作示例

    本文实例讲述了Python3实现的爬虫爬取数据并存入mysql数据库操作.分享给大家供大家参考,具体如下: 爬一个电脑客户端的订单.罗总推荐,抓包工具用的是HttpAnalyzerStdV7,与chrome自带的F12类似.客户端有接单大厅,罗列所有订单的简要信息.当单子被接了,就不存在了.我要做的是新出订单就爬取记录到我的数据库zyc里. 设置每10s爬一次. 抓包工具页面如图: 首先是爬虫,先找到数据存储的页面,再用正则爬出. # -*- coding:utf-8 -*- import re

  • Python实现爬取需要登录的网站完整示例

    本文实例讲述了Python爬取需要登录的网站实现方法.分享给大家供大家参考,具体如下: import requests from lxml import html # 创建 session 对象.这个对象会保存所有的登录会话请求. session_requests = requests.session() # 提取在登录时所使用的 csrf 标记 login_url = "https://bitbucket.org/account/signin/?next=/" result = se

  • python制作爬虫爬取京东商品评论教程

    本篇文章是python爬虫系列的第三篇,介绍如何抓取京东商城商品评论信息,并对这些评论信息进行分析和可视化.下面是要抓取的商品信息,一款女士文胸.这个商品共有红色,黑色和肤色三种颜色, 70B到90D共18个尺寸,以及超过700条的购买评论. 京东商品评论信息是由JS动态加载的,所以直接抓取商品详情页的URL并不能获得商品评论的信息.因此我们需要先找到存放商品评论信息的文件.这里我们使用Chrome浏览器里的开发者工具进行查找. 具体方法是在商品详情页点击鼠标右键,选择检查,在弹出的开发者工具界

随机推荐