关于Node.js中Buffer的一些你可能不知道的用法

前言

在大多数介绍 Buffer 的文章中,主要是围绕数据拼接和内存分配这两方面的。比如我们使用fs模块来读取文件内容的时候,返回的就是一个 Buffer:

fs.readFile('filename', function (err, buf) {
 // <Buffer 2f 2a 2a 0a 20 2a 20 53 75 ... >
});

在使用net或http模块来接收网络数据时,data事件的参数也是一个 Buffer,这时我们还需要使用Buffer.concat()来做数据拼接:

var bufs = [];
conn.on('data', function (buf) {
 bufs.push(buf);
});
conn.on('end', function () {
 // 接收数据结束后,拼接所有收到的 Buffer 对象
 var buf = Buffer.concat(bufs);
});

还可以利用Buffer.toString()来做转换base64或十六进制字符的转换,比如:

console.log(new Buffer('hello, world!').toString('base64'));
// 转换成 base64 字符串:aGVsbG8sIHdvcmxkIQ==

console.log(new Buffer('aGVsbG8sIHdvcmxkIQ==', 'base64').toString());
// 还原 base64 字符串:hello, world!

console.log(new Buffer('hello, world!').toString('hex'));
// 转换成十六进制字符串:68656c6c6f2c20776f726c6421

console.log(new Buffer('68656c6c6f2c20776f726c6421', 'hex').toString());
// 还原十六进制字符串:hello, world!

一般情况下,单个 Node.js 进程是有最大内存限制的,以下是来自官方文档中的说明:

What is the memory limit on a node process?

Currently, by default v8 has a memory limit of 512MB on 32-bit systems, and 1.4GB on 64-bit systems. The limit can be raised by setting --max_old_space_size to a maximum of ~1024 (~1 GB) (32-bit) and ~4096 (~4GB) (64-bit), but it is recommended that you split your single process into several workers if you are hitting memory limits.

由于 Buffer 对象占用的内存空间是不计算在 Node.js 进程内存空间限制上的,因此,我们也常常会使用 Buffer 来存储需要占用大量内存的数据:

// 分配一个 2G-1 字节的数据
// 单次分配内存超过此值会抛出异常 RangeError: Invalid typed array length
var buf = new Buffer(1024 * 1024 * 1024 - 1);

以上便是 Buffer 的几种常见用法。然而,阅读 Buffer 的 API 文档时,我们会发现更多的是readXXX()writeXXX()开头的 API,具体如下:

  • buf.readUIntLE(offset, byteLength[, noAssert])
  • buf.readUIntBE(offset, byteLength[, noAssert])
  • buf.readIntLE(offset, byteLength[, noAssert])
  • buf.readIntBE(offset, byteLength[, noAssert])
  • buf.readUInt8(offset[, noAssert])
  • buf.readUInt16LE(offset[, noAssert])
  • buf.readUInt16BE(offset[, noAssert])
  • buf.readUInt32LE(offset[, noAssert])
  • buf.readUInt32BE(offset[, noAssert])
  • buf.readInt8(offset[, noAssert])
  • buf.readInt16LE(offset[, noAssert])
  • buf.readInt16BE(offset[, noAssert])
  • buf.readInt32LE(offset[, noAssert])
  • buf.readInt32BE(offset[, noAssert])
  • buf.readFloatLE(offset[, noAssert])
  • buf.readFloatBE(offset[, noAssert])
  • buf.readDoubleLE(offset[, noAssert])
  • buf.readDoubleBE(offset[, noAssert])
  • buf.write(string[, offset][, length][, encoding])
  • buf.writeUIntLE(value, offset, byteLength[, noAssert])
  • buf.writeUIntBE(value, offset, byteLength[, noAssert])
  • buf.writeIntLE(value, offset, byteLength[, noAssert])
  • buf.writeIntBE(value, offset, byteLength[, noAssert])
  • buf.writeUInt8(value, offset[, noAssert])
  • buf.writeUInt16LE(value, offset[, noAssert])
  • buf.writeUInt16BE(value, offset[, noAssert])
  • buf.writeUInt32LE(value, offset[, noAssert])
  • buf.writeUInt32BE(value, offset[, noAssert])
  • buf.writeInt8(value, offset[, noAssert])
  • buf.writeInt16LE(value, offset[, noAssert])
  • buf.writeInt16BE(value, offset[, noAssert])
  • buf.writeInt32LE(value, offset[, noAssert])
  • buf.writeInt32BE(value, offset[, noAssert])
  • buf.writeFloatLE(value, offset[, noAssert])
  • buf.writeFloatBE(value, offset[, noAssert])
  • buf.writeDoubleLE(value, offset[, noAssert])
  • buf.writeDoubleBE(value, offset[, noAssert])

这些 API 为在 Node.js 中操作数据提供了极大的便利。假设我们要将一个整形数值存储到文件中,比如当前时间戳为1447656645380,如果将其当作一个字符串存储时,需要占用 11 字节的空间,而将其转换为二进制存储时仅需 6 字节空间即可:

var buf = new Buffer(6);

buf.writeUIntBE(1447656645380, 0, 6);
// <Buffer 01 51 0f 0f 63 04>

buf.readUIntBE(0, 6);
// 1447656645380

在使用 Node.js 编写一些底层功能时,比如一个网络通信模块、某个数据库的客户端模块,或者需要从文件中操作大量结构化数据时,以上 Buffer 对象提供的 API 都是必不可少的。

接下来将演示一个使用 Buffer 对象操作结构化数据的例子。

操作结构化数据

假设有一个学生考试成绩数据库,每条记录结构如下:

学号 课程代码 分数
XXXXXX XXXX XX

其中学号是一个 6 位的数字,课程代码是一个 4 位数字,分数最高分为 100 分。

在使用文本来存储这些数据时,比如使用 CSV 格式存储可能是这样的:

100001,1001,99
100002,1001,67
100003,1001,88

其中每条记录占用 15 字节的空间,而使用二进制存储时其结构将会是这样:

学号 课程代码 分数
3 字节 2 字节 1 字节

每一条记录仅需要 6 字节的空间即可,仅仅是使用文本存储的 40%!下面是用来操作这些记录的程序:

// 读取一条记录
// buf Buffer 对象
// offset 本条记录在 Buffer 对象的开始位置
// data {number, lesson, score}
function writeRecord (buf, offset, data) {
 buf.writeUIntBE(data.number, offset, 3);
 buf.writeUInt16BE(data.lesson, offset + 3);
 buf.writeInt8(data.score, offset + 5);
}

// 写入一条记录
// buf Buffer 对象
// offset 本条记录在 Buffer 对象的开始位置
function readRecord (buf, offset) {
 return {
 number: buf.readUIntBE(offset, 3),
 lesson: buf.readUInt16BE(offset + 3),
 score: buf.readInt8(offset + 5)
 };
}

// 写入记录列表
// list 记录列表,每一条包含 {number, lesson, score}
function writeList (list) {
 var buf = new Buffer(list.length * 6);
 var offset = 0;
 for (var i = 0; i < list.length; i++) {
 writeRecord(buf, offset, list[i]);
 offset += 6;
 }
 return buf;
}

// 读取记录列表
// buf Buffer 对象
function readList (buf) {
 var offset = 0;
 var list = [];
 while (offset < buf.length) {
 list.push(readRecord(buf, offset));
 offset += 6;
 }
 return list;
}

我们可以再编写一段程序来看看效果:

var list = [
 {number: 100001, lesson: 1001, score: 99},
 {number: 100002, lesson: 1001, score: 88},
 {number: 100003, lesson: 1001, score: 77},
 {number: 100004, lesson: 1001, score: 66},
 {number: 100005, lesson: 1001, score: 55},
];
console.log(list);

var buf = writeList(list);
console.log(buf);
// 输出 <Buffer 01 86 a1 03 e9 63 01 86 a2 03 e9 58 01 86 a3 03 e9 4d 01 86 a4 03 e9 42 01 86 a5 03 e9 37>

var ret = readList(buf);
console.log(ret);
/* 输出
[ { number: 100001, lesson: 1001, score: 99 },
 { number: 100002, lesson: 1001, score: 88 },
 { number: 100003, lesson: 1001, score: 77 },
 { number: 100004, lesson: 1001, score: 66 },
 { number: 100005, lesson: 1001, score: 55 } ]
*/

lei-proto 模块介绍

上面的例子中,当每一条记录的结构有变化时,我们需要修改readRecord()writeRecord() ,重新计算每一个字段在 Buffer 中的偏移量,当记录的字段比较复杂时很容易出错。为此我编写了lei-proto模块,它允许你通过简单定义每条记录的结构即可生成对应的readRecord()`writeRecord()函数。

首先执行以下命令安装此模块:

$ npm install lei-proto --save

使用lei-proto模块后,前文的例子可以改为这样:

var parsePorto = require('lei-proto');

// 生成指定记录结构的数据编码/解码器
var record = parsePorto([
 ['number', 'uint', 3],
 ['lesson', 'uint', 2],
 ['score', 'uint', 1]
]);

function readList (buf) {
 var list = [];
 var offset = 0;
 while (offset < buf.length) {
 list.push(record.decode(buf.slice(offset, offset + 6)));
 offset += 6;
 }
 return list;
}

function writeList (list) {
 return Buffer.concat(list.map(record.encodeEx));
}

运行与上文同样的测试程序,可看到其结果是一样的:

<Buffer 01 86 a1 03 e9 63 01 86 a2 03 e9 58 01 86 a3 03 e9 4d 01 86 a4 03 e9 42 01 86 a5 03 e9 37>
[ { number: 100001, lesson: 1001, score: 99 },
 { number: 100002, lesson: 1001, score: 88 },
 { number: 100003, lesson: 1001, score: 77 },
 { number: 100004, lesson: 1001, score: 66 },
 { number: 100005, lesson: 1001, score: 55 } ]

关于lei-proto模块的详细使用方法可访问该模块的主页浏览:https://github.com/leizongmin/node-lei-proto

对此感兴趣的读者也可研究一下其实现原理。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对我们的支持。

(0)

相关推荐

  • 深入理解Node中的buffer模块

    在Node.ES2015出现之前,前端工程师只需要进行一些简单的字符串或DOM操作就可以满足业务需要,所以对二进制数据是比较陌生.node出现以后,前端面对的技术场景发生了变化,可以深入到网络传输.文件操作.图片处理等领域,而这些操作都与二进制数据紧密相关. Node里面的buffer,是一个二进制数据容器,数据结构类似与数组,数组里面的方法在buffer都存在(slice操作的结果不一样).下面就从源码(v6.0版本)层面分析,揭开buffer操作的面纱. 1. buffer的基本使用 在No

  • 使用node.js中的Buffer类处理二进制数据的方法

    前言 在Node.js中,定义了一个Buffer类,该类用来创建一个专门存放二进制数据的缓存区.这篇文章就详细介绍了node.js中的Buffer类处理二进制数据的方法,下面话不多说,来看看详细的介绍. 创建Buffer对象 第一种:直接使用一个数组来初始化缓存区 var arr = [0,1,2] var buf = new Buffer(arr) console.log(buf) 执行效果: 第二种:直接使用一个字符串来初始化缓存区 var str = 'hello' var buf = n

  • 浅谈Node.js:Buffer模块

    Javascript在客户端对于unicode编码的数据操作支持非常友好,但是对二进制数据的处理就不尽人意.Node.js为了能够处理二进制数据或非unicode编码的数据,便设计了Buffer类,该类实现了Uint8Array接口,并对其进行了优化,它的实例类似于整型数组,但是它的大小在创建后便不可调整.在介绍Buffer如何使用之前,先介绍几个知识点. 1.V8引擎的内存使用限制 V8引擎最大堆内存使用在32位系统上默认为512M,在64位系统上是1GB,虽然可以使用--max-old-sp

  • node.js中的buffer.slice方法使用说明

    方法说明: 返回一个新的buffer对象,这个新buffer和老buffer公用一个内存. 但是被start和end索引偏移缩减了.(比如,一个buffer里有1到10个字节,我们只想要4-8个字节,就可以用这个函数buf.slice(4,8),因为他们共用一个内存,所以不会消耗内存,) 因为共用内存,所以修改新的buffer后,老buffer的内容同样也会被修改. 语法: 复制代码 代码如下: buffer.slice([start], [end]) 接收参数: start      开始位置

  • Node.js实用代码段之获取Buffer对象字节长度

    我们知道Node.js框架下的Buffer对象能够对二进制数据提供很好的支持,那么获取一个Buffer对象真实的字节长度则是必须要用到的功能了.Node.js框架为开发人员提供了一个Buffer.byteLength()方法,下面我们借助一个官方文档提供的例程向读者演示一下该方法的使用过程. 本例ch04.buffer-byteLength.js主要代码如下: /** * ch04.buffer-byteLength.js */ console.info("------Buffer.byteLe

  • Node.js中使用Buffer编码、解码二进制数据详解

    JavaScript很擅长处理字符串,但是因为它最初的设计是用来处理HTML文档,因此它并不太擅长处理二进制数据.JavaScript没有byte类型,没有结构化的类型(structured types),甚至没有字节数组,只有数字和字符串.(原文:JavaScript doesn't have a byte type - it just has numbers - or structured types, or http://skylitecellars.com/ even byte arra

  • Node.js实用代码段之正确拼接Buffer

    对于初学Node.js框架的开发人员来说,可能认为Buffer模块比较易学.重要性也不是那么突出.其实,Buffer模块在文件I/O和网络I/O中应用非常广泛,其处理二进制的性能比普通字符串性能要高出很多,重要性可谓是举足轻重.下面我们通过一个例程向读者演示一下,使用buf.concat()方法进行拼接的过程. 本例ch04.buffer-concat.js主要代码如下: /** * ch04.buffer-concat.js */ console.info("------ Buffer con

  • 关于Node.js中Buffer的一些你可能不知道的用法

    前言 在大多数介绍 Buffer 的文章中,主要是围绕数据拼接和内存分配这两方面的.比如我们使用fs模块来读取文件内容的时候,返回的就是一个 Buffer: fs.readFile('filename', function (err, buf) { // <Buffer 2f 2a 2a 0a 20 2a 20 53 75 ... > }); 在使用net或http模块来接收网络数据时,data事件的参数也是一个 Buffer,这时我们还需要使用Buffer.concat()来做数据拼接: v

  • node.js中Buffer缓冲器的原理与使用方法分析

    本文实例讲述了node.js中Buffer缓冲器的原理与使用方法.分享给大家供大家参考,具体如下: 一.什么是Buffer Buffer缓冲器是用来存储输入和输出数据的一段内存.js语言没有二进制数据类型,在处理TCP和文件流的时候,就不是很方便了. 所以node.js提供了Buffer类来处理二进制数据,Buffer类是一个全局变量,Buffer在创建的时候大小就固定了,无法改变. Buffer类的实例类似于由字节元素组成的数组,可以有效的表示二进制数据. 二.什么是字节 字节是计算机存储时的

  • Node.js中的Buffer对象及创建方式

    目录 什么是Buffer? 注意 Buffer中存储的都是二进制数据,但是在显示时以16进制显示 Buffer.length表示占用内存的大小 Buffer打印数字时会以十进制方式显示 Buffer的创建方法 通过Buffer的构造函数,但不推荐使用 通过allocUnsafe方法 通过alloc方法 通过Buffer.from()方法 写入缓冲区 从缓冲区读取数据 将 Buffer 转换为 JSON 对象 拷贝缓冲区 缓冲区与迭代器 总结 什么是Buffer? js语言自身只有字符串数据类型,

  • Node.js中常规的文件操作总结

    前言 Node.js 提供一组类似 UNIX(POSIX)标准的文件操作API. Node 导入文件系统模块(fs)语法如下所示: var fs = require("fs") fs模块是文件操作的封装,它提供了文件的读取.写入.更名.删除.遍历目录.链接等POSIX文件系统操作.与其他模块不同的是,fs模块中所有的操作都提供了异步和同步的两个版本,例如读取文件内容的函数有异步的fs.readFile()和同步的fs.readFileSync() . 一. 目录操作 1. 创建目录 创

  • 在Node.js中使用HTTP上传文件的方法

    开发环境 我们将使用 Visual Studio Express 2013 for Web 作为开发环境, 不过它还不能被用来做 Node.js 开发.为此我们需要安装 Node.js Tools for Visual Studio.  装好后 Visual Studio Express 2013 for Web 就会转变成一个 Node.js IDE 环境,提供创建这个应用所需要的所有东西..而基于这里提供的指导,我们需要: 下载安装 Node.js  Windows 版,选择适用你系统平台的

  • Node.js中的缓冲与流模块详细介绍

    缓冲(buffer)模块 js起初就是为浏览器而设计的,所以能很好的处理unicode编码的字符串,但不能很好的处理二进制数据.这是Node.js的一个问题,因为Node.js旨在网络上发送和接收经常是以二进制格式传输的数据.比如: - 通过TCP连接发送和接收数据:  - 从图像或者压缩文件读取二进制数据:  - 从文件系统读写数据:  - 处理来自网络的二进制数据流 而Buffer模块为Node.js带来了一种存储原始数据的方法,于是可以再js的上下文中使用二进制数据.每当需要在Node.j

  • 详解node.js中的npm和webpack配置方法

    概述 Node.js用c++语言编写而成的,是一个基于chrome V8引擎的javascript运行环境,让javaScript的运行脱离浏览器服务端,可以使用javaScript语言书写服务器端代码 1.使用node来实现一个http服务器 下面创建了一个端口为8787的服务器.他与php,java等不同,像php本地还要基于阿帕奇服务器,node.js能用代码快速搭建一个服务器. // 引入http模块 var http = require("http"); // 调用http的

  • node.js中ws模块创建服务端和客户端,网页WebSocket客户端

    首先下载websocket模块,命令行输入 npm install ws 1.node.js中ws模块创建服务端 // 加载node上websocket模块 ws; var ws = require("ws"); // 启动基于websocket的服务器,监听我们的客户端接入进来. var server = new ws.Server({ host: "127.0.0.1", port: 6080, }); // 监听接入进来的客户端事件 function webs

  • Node.js中你不可不精的Stream(流)

    一.什么是Stream(流) 流(stream)在 Node.js 中是处理流数据的抽象接口(abstract interface). stream 模块提供了基础的API.使用这些API可以很容易地来构建实现流接口的对象.例如, HTTP 请求 和 process.stdout 就都是流的实例. 流可以是可读的.可写的,或是可读写的.注意,所有的流都是 EventEmitter 的实例. 二.流的类型 Node.js 中有四种基本的流类型: Readable - 可读的流 (例如 fs.cre

随机推荐