PHP实现排序堆排序(Heap Sort)算法

算法引进:

在这里我直接引用《大话数据结构》里面的开头:

在前面讲到 简单选择排序 ,它在待排序的 n 个记录中选择一个最小的记录需要比较 n - 1 次,本来这也可以理解,查找第一个数据需要比较这么多次是正常的,否则如何知道他是最小的记录。

可惜的是,这样的操作并没有把每一趟的比较结果保存下来,在后一趟的比较重,有许多比较在前一趟已经做过了,但由于前一趟排序时未保存这些比较结果,所以后一趟排序时又重复执行了这些比较操作,因而记录的比较次数较多。

如果可以做到每次在选择到最小记录的同时,并根据比较结果对其他记录做出相应的调整,那样排序的总体效率就会非常高了。而堆排序,就是对简单选择排序进行的一种改进,这种改进的效果是非常明显的。

基本思想:

在介绍堆排序之前,我们先来介绍一下堆:

《大话数据结构》里的定义:堆 是具有下列性质的完全二叉树:每个节点的值都大于或等于其左右孩子节点的值,成为大顶堆(大根堆);或者每个节点的值都小于或等于其左右节点的值,成为小顶堆(小根堆)。

当时我在看到这里的时候也对有“堆是否是完全二叉树”有过疑问,网上也有说不是完全二叉树的,但是无论堆是不是完全二叉树,尚且保留意见。我们只要知道,在这里我们采用完全二叉树形式的大根堆(小跟堆),主要是为了方便存储和计算(后面我们会看到带来的便利)。

堆排序算法:

堆排序就是利用堆(假设利用大根堆)进行排序的方法,它的基本思想是:将待排序的序列构造成一个大根堆。此时,整个序列的最大值就是堆顶的根节点。将它移走(其实就是将其与堆数组的末尾元素交换,此时末尾元素就是最大值),然后将剩余的 n - 1 个序列重新构造成一个堆,这样就会得到 n 个元素中的次小的值。如此反复执行,便能得到一个有序序列了。

大根堆排序算法的基本操作:

①建堆,建堆是不断调整堆的过程,从 len/2 处开始调整,一直到第一个节点,此处 len 是堆中元素的个数。建堆的过程是线性的过程,从 len/2 到 0 处一直调用调整堆的过程,相当于 o(h1) + o(h2) …+ o(hlen/2) 其中 h 表示节点的深度, len/2 表示节点的个数,这是一个求和的过程,结果是线性的 O(n)。

②调整堆:调整堆在构建堆的过程中会用到,而且在堆排序过程中也会用到。利用的思想是比较节点i和它的孩子节点 left(i) , right(i),选出三者最大(或者最小)者,如果最大(小)值不是节点i而是它的一个孩子节点,那边交互节点i和该节点,然后再调用调整堆过程,这是一个递归的过程。调整堆的过程时间复杂度与堆的深度有关系,是 lgn 的操作,因为是沿着深度方向进行调整的。

③堆排序:堆排序是利用上面的两个过程来进行的。首先是根据元素构建堆。然后将堆的根节点取出(一般是与最后一个节点进行交换),将前面 len-1 个节点继续进行堆调整的过程,然后再将根节点取出,这样一直到所有节点都取出。堆排序过程的时间复杂度是 O(nlgn)。因为建堆的时间复杂度是 O(n)(调用一次);调整堆的时间复杂度是 lgn,调用了 n-1 次,所以堆排序的时间复杂度是 O(nlgn)。

在这个过程中是需要大量的图示才能看的明白的,但是我懒。。。。。。

算法实现:

<?php

//堆排序(对简单选择排序的改进)

function swap(array &$arr,$a,$b){
 $temp = $arr[$a];
 $arr[$a] = $arr[$b];
 $arr[$b] = $temp;
}

//调整 $arr[$start]的关键字,使$arr[$start]、$arr[$start+1]、、、$arr[$end]成为一个大根堆(根节点最大的完全二叉树)
//注意这里节点 s 的左右孩子是 2*s + 1 和 2*s+2 (数组开始下标为 0 时)
function HeapAdjust(array &$arr,$start,$end){
 $temp = $arr[$start];
 //沿关键字较大的孩子节点向下筛选
 //左右孩子计算(我这里数组开始下标识 0)
 //左孩子2 * $start + 1,右孩子2 * $start + 2
 for($j = 2 * $start + 1;$j <= $end;$j = 2 * $j + 1){
  if($j != $end && $arr[$j] < $arr[$j + 1]){
   $j ++; //转化为右孩子
  }
  if($temp >= $arr[$j]){
   break; //已经满足大根堆
  }
  //将根节点设置为子节点的较大值
  $arr[$start] = $arr[$j];
  //继续往下
  $start = $j;
 }
 $arr[$start] = $temp;
}

function HeapSort(array &$arr){
 $count = count($arr);
 //先将数组构造成大根堆(由于是完全二叉树,所以这里用floor($count/2)-1,下标小于或等于这数的节点都是有孩子的节点)
 for($i = floor($count / 2) - 1;$i >= 0;$i --){
  HeapAdjust($arr,$i,$count);
 }
 for($i = $count - 1;$i >= 0;$i --){
  //将堆顶元素与最后一个元素交换,获取到最大元素(交换后的最后一个元素),将最大元素放到数组末尾
  swap($arr,0,$i);
  //经过交换,将最后一个元素(最大元素)脱离大根堆,并将未经排序的新树($arr[0...$i-1])重新调整为大根堆
  HeapAdjust($arr,0,$i - 1);
 }
}

$arr = array(9,1,5,8,3,7,4,6,2);
HeapSort($arr);
var_dump($arr);

时间复杂度分析:

它的运行时间只要是消耗在初始构建对和在重建堆屎的反复筛选上。

总体上来说,堆排序的时间复杂度是 O(nlogn)。由于堆排序对原始记录的排序状态并不敏感,因此它无论是最好、最差和平均时间复杂度都是 O(nlogn)。这在性能上显然要远远好于冒泡、简单选择、直接插入的 O(n^2) 的时间复杂度了。

堆排序是一种不稳定排序方法。

本篇博客参考自《大话数据结构》,在此仅作记录,方便以后查阅,大神勿喷!

(0)

相关推荐

  • php堆排序实现原理与应用方法

    本文实例讲述了php堆排序实现原理与应用方法.分享给大家供大家参考.具体分析如下: 这里以php作为描述语言较详细讲解堆排序原理,因保证程序可读性,故不做优化,php程序中关于堆的一些概念如下: 假设n为当前数组的key则,n的父节点为 n>>1 或者 n/2(整除);n的左子节点l= n<<1 或 l=n*2,n的右子节点r=(n<<1)+1 或 r=l+1 $arr=array(1,8,7,2,3,4,6,5,9); 数组$arr的原形态结构如下: 1       

  • PHP实现的堆排序算法详解

    本文实例讲述了PHP实现的堆排序算法.分享给大家供大家参考,具体如下: 经验 工作了,面试我工作这家公司时被技术面打击得不行,因为自己的数据结构等基础学得实在太差,虽然原来是想做设计师的说...不过看在PHP写得还凑合的份上能来实习了,但还是决心恶补一下基础. 其实自己之前也确实感觉到了基础的重要性,一些比较深的东西都比较底层,不学好根本没法进行.像我之前用PHP做websocket,就牵扯到数据包.数据帧等概念,搞不清楚,连数据都没法处理,还得后来补.所以我准备重新学一下数据结构,算法,网络等

  • php堆排序(heapsort)练习

    复制代码 代码如下: <?//堆排序应用class heapsort  {    var $a;    function setarray($a)//取得数组      {        $this->a=$a;      }    function runvalue($b,$c)//$a 代表数组,$b代表排序堆,$c代表结束点,      {        while($b<$c)          {            $h1=2*$b;            $h2=(2*$

  • PHP排序算法之堆排序(Heap Sort)实例详解

    本文实例讲述了PHP排序算法之堆排序(Heap Sort).分享给大家供大家参考,具体如下: 算法引进: 在这里我直接引用<大话数据结构>里面的开头: 在前面讲到 简单选择排序 ,它在待排序的 n 个记录中选择一个最小的记录需要比较 n - 1 次,本来这也可以理解,查找第一个数据需要比较这么多次是正常的,否则如何知道他是最小的记录. 可惜的是,这样的操作并没有把每一趟的比较结果保存下来,在后一趟的比较重,有许多比较在前一趟已经做过了,但由于前一趟排序时未保存这些比较结果,所以后一趟排序时又重

  • 图文详解Heap Sort堆排序算法及JavaScript的代码实现

    1. 不得不说说二叉树 要了解堆首先得了解一下二叉树,在计算机科学中,二叉树是每个节点最多有两个子树的树结构.通常子树被称作"左子树"(left subtree)和"右子树"(right subtree).二叉树常被用于实现二叉查找树和二叉堆. 二叉树的每个结点至多只有二棵子树(不存在度大于 2 的结点),二叉树的子树有左右之分,次序不能颠倒.二叉树的第 i 层至多有 2i - 1 个结点:深度为 k 的二叉树至多有 2k - 1 个结点:对任何一棵二叉树 T,如果

  • PHP排序算法之简单选择排序(Simple Selection Sort)实例分析

    本文实例讲述了PHP排序算法之简单选择排序(Simple Selection Sort).分享给大家供大家参考,具体如下: 基本思想: 通过 n - i 次关键字间的比较,从 n - i + 1 个记录中选出关键字最小的记录,并和第 i (1 <= i <= n) 个记录交换,执行n-1趟 后就完成了记录序列的排序. 算法实现: <?php //简单选择排序 //交换函数 function swap(array &$arr,$a,$b){ $temp = $arr[$a]; $a

  • C语言排序算法之选择排序(直接选择排序,堆排序)

    目录 前言 一.直接选择排序 1.1 算法思想 1.2 代码实现 1.3 直接选择排序的特征总结 二.堆排序 2.1 什么是堆? 2.2 判断是否是堆 2.3 向下调整算法 2.4 自底向上的建堆方式 2.5 代码实现 2.6 堆排序的特性总结 2.7 堆排序的特性总结 前言 本期为大家带来的是常见排序算法中的选择排序,主要有直接选择排序以及——堆排序(有点难理解),包您一看就会,快来试试吧~ 一.直接选择排序 1.1 算法思想 每一次从待排序的数据元素中选出最小(或最大的)的一个元素,存放在序

  • php数据结构 算法(PHP描述) 简单选择排序 simple selection sort

    复制代码 代码如下: <?php /** * 简单选择排序 simple selection sort * * 原理: 一次选定数组中的每一个数,记下当前位置并假设它是从当前位置开始后面数中的最小数min=i,从这个数的下一个数开始扫描直到最后一个数,并记录下最小数的位置min,扫描结束后如果min不等于i,说明假设错误,则交换min与i位置上数. */ function sort_simple_selection($list) { $len = count($list); if(empty($

  • 基于js 各种排序方法和sort方法的区别(详解)

    今天突发奇想,想明白sort方法是否比各种排序都有优势,所以就参考别人的代码,做了一个测试,结果令人惊讶啊,上代码. <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width,initial-scale=1.0,max

  • JavaScript实现获取两个排序数组的中位数算法示例

    本文实例讲述了JavaScript实现获取两个排序数组的中位数算法.分享给大家供大家参考,具体如下: 题目 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2 . 请找出这两个有序数组的中位数.要求算法的时间复杂度为 O(log (m+n)) . 你可以假设 nums1 和 nums2 不同时为空. 示例 1: nums1 = [1, 3] nums2 = [2] 中位数是 2.0 示例 2: nums1 = [1, 2] nums2 = [3, 4] 中位数是 (2 + 3)/

  • java实现6种字符串数组的排序(String array sort)

    注意,本文不是字符串排序,是字符串数组的排序. 方法分别是: 1.低位优先键索引排序 2.高位优先建索引排序 3.Java自带排序(经过调优的归并排序) 4.冒泡排序 5.快速排序 6.三向快速排序 时间复杂度: 最慢的肯定是冒泡,O(n的平方) 最快的是快速排序,平均 O(nlogn) 低位优先,O(nW),W是字符串长度,在字符串长度较短情况下和快速排序时间应该很接近 高位优先,O(n) - O(nW) 三向快速排序,O(n) - O(nW) 本文中使用的例子是一个5757行的随机字符串数组

  • C语言数据结构之堆排序的优化算法

    目录 1.堆排序优化算法 1.1建堆的时间复杂度 1.1.1 向下调整建堆:O(N) 1.1.2 向上调整建堆:O(N*logN) 1.2堆排序的复杂度 1.2.1原堆排序的时间复杂度 1.2.2原堆排序的空间复杂度 1.3堆排序优化算法的复杂度 1.3.1 堆排序优化算法的时间复杂度 1.3.2 堆排序优化算法的空间复杂度 1.4堆排序实现逻辑 1.5堆排序实现代码 1.6演示结果 总结 在浏览本篇博文的小伙伴可先浅看一下上篇堆和堆排序的思想: 戳这里可跳转上篇文~~ 1.堆排序优化算法 要堆

  • PHP实现排序堆排序(Heap Sort)算法

    算法引进: 在这里我直接引用<大话数据结构>里面的开头: 在前面讲到 简单选择排序 ,它在待排序的 n 个记录中选择一个最小的记录需要比较 n - 1 次,本来这也可以理解,查找第一个数据需要比较这么多次是正常的,否则如何知道他是最小的记录. 可惜的是,这样的操作并没有把每一趟的比较结果保存下来,在后一趟的比较重,有许多比较在前一趟已经做过了,但由于前一趟排序时未保存这些比较结果,所以后一趟排序时又重复执行了这些比较操作,因而记录的比较次数较多. 如果可以做到每次在选择到最小记录的同时,并根据

随机推荐