OpenCV利用霍夫变换进行直线检测

本文实例为大家分享了OpenCV利用霍夫变换进行直线检测的具体代码,供大家参考,具体内容如下

1.最简单的霍夫变换是在图像中识别直线。在平面直角坐标系(x-y)中,一条直线可以用下式表示:y=kx+b。

这表示参数平面(k-b)中的一条直线。因此,图像中的一个点对应参数平面中的一条直线,图像中的一条直线对应参数平面中的一个点。对图像上所有的点作霍夫变换,最终所要检测的直线对应的一定是参数平面中直线相交最多的那个点。这样就在图像中检测出了直线。在实际应用中,直线通常采用参数方程:p=x\cos\theta+y\sin\theta。

Opencv里有以下函数检测直线(最基本的霍夫变换):

void HoughLines(InputArray image, OutputArray lines, double rho, double theta, int threshold, double srn=0, double stn=0 )

具体用法看代码就知道了:(现在版本的OpenCV使用函数cvHoughLines2)

#include "opencv2/opencv.hpp"
#define PI 3.1415926

int main(int argc, char *argv[])
{
 cv::Mat image = cv::imread ("road.jpg");
 cv::Mat result;
 cv::cvtColor (image,result,CV_BGRA2GRAY);
 cv::Mat contours;
 cv::Canny (result,contours,125,350); //边缘检测
 std::vector<cv::Vec2f> lines;
 /*霍夫变换,获得一组极坐标参数(rho,theta),每一对对应一条直线,保存到lines
  第3,4个参数表示在(rho,theta)坐标系里横纵坐标的最小单位,即步长*/
 cv::HoughLines (contours,lines,1,PI/180,80);
 std::vector<cv::Vec2f>::const_iterator iter = lines.begin ();
 std::cout<<lines.size ()<<std::endl;
 while(iter != lines.end())
 {
  float rho = (*iter)[0];
  float theta = (*iter)[1];
  if(theta<PI/4.||theta>3.*PI/4)
 { //画交点在上下两边的直线
   cv::Point pt1(rho/cos(theta),0);
   cv::Point pt2((rho-result.rows*sin(theta))/cos(theta),result.rows);
   cv::line(image,pt1,pt2,cv::Scalar(255),1);
  }
  else
  { //画交点在左右两边的直线
   cv::Point pt1(0,rho/sin(theta));
   cv::Point pt2(result.cols,(rho-result.cols*cos(theta)/sin(theta)));
   cv::line(image,pt1,pt2,cv::Scalar(255),1);
  }
  ++iter;
 }
 cv::namedWindow ("hough");
 cv::imshow("hough",image);
 cv::waitKey (0);
}

测试结果如下:

2.可以看出,上面的直线检测存在以下问题:

1)只能检测出线段所在的直线,而不知道具体线段位置,也不知道线段长度;

2)同一直线可能检测出多条直线;

3)偶然地也可能误判段直线。

针对这些问题,opencv有那么一个函数:(现在版本的OpenCV使用同一个函数cvHoughLines2)

void HoughLinesP(InputArray image, OutputArray lines, double rho, double theta, int threshold, dou-
ble minLineLength=0, double maxLineGap=0)

这个方法是通过概率霍夫变换实现的:

1)随机获取边缘图片上的前景点,映射到级坐标系画曲线;

2)当极坐标系里面有交点达到最小投票数,将该点对应x-y坐标系的直线L找出来;

3)搜索边缘图片上前景点,在直线L上的点(且点与点之间距离小于maxLineGap的)连成线段,然后这些点全部删除,并且记录该线段的参数,就是起始点和终止点。(当然这里线段长度要满足最小长度的,否则就不用记录了)

4)重复1),2),3)

其使用方法见代码:

#include "opencv2/opencv.hpp"
#define PI 3.1415926

class LineFinder
{
private:
  std::vector<cv::Vec4i> lines; // 直线对应的点参数向量
  double deltaRho; //步长
  double deltaTheta;
  int minVote; // 判断是直线的最小投票数
  double minLength; // 判断是直线的最小长度
  double maxGap; // 同一条直线上点之间的距离容忍度
public:
  LineFinder() : deltaRho(1), deltaTheta(PI/180),
  minVote(10), minLength(0.), maxGap(0.) {} //初始化

  void setAccResolution(double dRho, double dTheta) // 设置步长
  {
   deltaRho= dRho;
   deltaTheta= dTheta;
  }

  void setMinVote(int minv) // 设置最小投票数
 {
   minVote= minv;
  }

  void setLineLengthAndGap(double length, double gap) // 设置最小线段长度和线段间距容忍度
 {
   minLength= length;
   maxGap= gap;
  }

  std::vector<cv::Vec4i> findLines(cv::Mat& binary) //寻找线段
 {
   lines.clear();
   cv::HoughLinesP(binary,lines, deltaRho, deltaTheta, minVote,minLength, maxGap);
   return lines;
  }

  void drawDetectedLines(cv::Mat &image, cv::Scalar color=cv::Scalar(255,255,255)) // 画线段
 {
  std::vector<cv::Vec4i>::const_iterator it2=lines.begin();
   while (it2!=lines.end())
  {
    cv::Point pt1((*it2)[0],(*it2)[1]);
    cv::Point pt2((*it2)[2],(*it2)[3]);
    cv::line( image, pt1, pt2, color);
    ++it2;
   }
  }
};

int main(int argc, char *argv[])
{
 cv::Mat image = cv::imread ("road.jpg");
 cv::Mat result;
 cv::cvtColor (image,result,CV_BGRA2GRAY);
 cv::Mat contours;
 cv::Canny (result,contours,125,350); //边缘检测
 LineFinder finder;
 finder.setMinVote (80);
 finder.setLineLengthAndGap (100,20);
 finder.findLines (contours);
 finder.drawDetectedLines (image);
 std::vector<cv::Vec2f> lines;
 cv::HoughLines (contours,lines,1,PI/180,80);
 std::vector<cv::Vec2f>::const_iterator iter = lines.begin ();
 std::cout<<lines.size ()<<std::endl;
 while(iter != lines.end())
 {
  float rho = (*iter)[0];
  float theta = (*iter)[1];
  if(theta<PI/4.||theta>3.*PI/4)
 { //画交点在上下两边的直线
   cv::Point pt1(rho/cos(theta),0);
   cv::Point pt2((rho-result.rows*sin(theta))/cos(theta),result.rows);
   cv::line(image,pt1,pt2,cv::Scalar(255),1);
  }
  else
  { //画交点在左右两边的直线
   cv::Point pt1(0,rho/sin(theta));
   cv::Point pt2(result.cols,(rho-result.cols*cos(theta)/sin(theta)));
   cv::line(image,pt1,pt2,cv::Scalar(255),1);
  }
  ++iter;
 }
 cv::namedWindow ("hough");
 cv::imshow("hough",image);
 cv::waitKey (0);
}

测试结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • OpenCV实现图像边缘检测

    最近自己在做一个有关图像处理的小项目,涉及到图像的边缘检测.直线检测.轮廓检测以及角点检测等,本文首先介绍图像的边缘检测,使用的是Canny边缘检测算法,具体代码以及检测效果如下: 1.代码部分: // Image_Canny.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <cv.h> #include "highgui.h" using namespace cv; int _tmain(int

  • OpenCV实现图像轮廓检测以及外接矩形

    前两篇博文分别介绍了图像的边缘检测和轮廓检测,本文接着介绍图像的轮廓检测和轮廓外接矩形: 一.代码部分: // extract_contours.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<cv.h> #include<highgui.h> using namespace cv; using namespace std; int _tmain(int argc, _TCHAR* argv[]) { /

  • opencv实现图片与视频中人脸检测功能

    本文实例为大家分享了opencv实现人脸检测功能的具体代码,供大家参考,具体内容如下 第一章:反思与总结 上一篇博客我相信自己将人脸检测中的AdaBoost算法解释的非常清晰了,以及如何训练人脸检测的强分类器:人脸检测中AdaBoost算法详解.事后,自我感觉对这个人脸检测还是不够具体,所以自己抽了一下午的时间用opencv实现图片与视频中的人脸检测,下面是我用vs2013加opencv4.9来实现的.做一下声明,我的代码是参考OpenCV实现人脸检测的一个博客写的,非常感谢这位博主,我学到了很

  • 10个步骤Opencv轻松检测出图片中条形码

    本文为大家分享了Opencv轻松检测出图片中条形码的步骤,供大家参考,具体内容如下 1. 原图像大小调整,提高运算效率 2. 转化为灰度图 3. 高斯平滑滤波 4.求得水平和垂直方向灰度图像的梯度差,使用Sobel算子 5.均值滤波,消除高频噪声 6.二值化 7.闭运算,填充条形码间隙 8. 腐蚀,去除孤立的点 9. 膨胀,填充条形码间空隙,根据核的大小,有可能需要2~3次膨胀操作 10.通过findContours找到条形码区域的矩形边界 实现: #include "core/core.hpp

  • 利用Opencv中Houghline方法实现直线检测

    利用Opencv中的Houghline方法进行直线检测-python语言 这是给Python部落翻译的文章,请在这里看原文. 在图像处理中,霍夫变换用来检测任意能够用数学公式表达的形状,即使这个形状被破坏或者有点扭曲. 下面我们将看到利用HoughLine算法来阐述霍夫变化进行直线检测的原理,把此算法应用到特点图像的边缘检测是可取的.边缘检测方法请参考这篇文章–边缘检测. Houghline算法基础 直线可以表示为y=mx+c,或者以极坐标形式表示为r=xcosθ+ysinθ,其中r是原点到直线

  • 使用OpenCV实现检测和追踪车辆

    本文实例为大家分享了OpenCV实现检测和追踪车辆的具体代码,供大家参考,具体内容如下 完整源码GitHub 使用高斯混合模型(BackgroundSubtractorMOG2)对背景建模,提取出前景 使用中值滤波去掉椒盐噪声,再闭运算和开运算填充空洞 使用cvBlob库追踪车辆,我稍微修改了cvBlob源码来通过编译 由于要对背景建模,这个方法要求背景是静止的 另外不同车辆白色区域不能连通,否则会认为是同一物体 void processVideo(char* videoFilename) {

  • opencv检测直线方法之投影法

    本文实例为大家分享了opencv检测直线之投影法的具体代码,供大家参考,具体内容如下 以下是我对投影法的一点认识和实验: 投影法就是数字图像在某个方向上进行像素累加.通过水平和垂直方向的投影,可以得到表格图像投影的几个特点: (1)表格区域的水平与竖直投影分布通常出现周期性的尖峰 (2)在文字投影的行与行之间或列与列之间常会出现明显的空白区 因此,求图像水平以及竖直投影,根据特点分别设以阈值就可以将横线以及竖直线所在位置确定. 第一步:求图像的水平投影.竖直投影 第二步:设定合理阈值,求取大于阈

  • OpenCV实现图像角点检测

    历时一个多月,于今天上午终于将项目交上去了,这期间虽很辛苦,但是成长了不少,在此将项目中涉及到的知识点进行整理,本文主要介绍图像的角点检测: 一.代码部分: // Detect_Corners.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include "opencv2/opencv.hpp" #include <opencv2/imgproc/imgproc.hpp> #include <iostre

  • OpenCV实现图像的直线检测

    上一篇博文介绍了图像的Canny边缘检测,本文主要介绍图像的直线检测部分,主要使用概率霍夫变换来检测直线,调用的函数为HoughLinesP(),下面给出代码部分以及直线检测效果图: 1.代码部分: // Detect_Lines.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <cv.h> #include "highgui.h" using namespace std; using names

  • opencv检测直线方法之形态学方法

    在阅读文献中,偶然发现使用使用形态学方法也可以检测直线,故做实验并记录. 使用该方法,需要定义一个长度为L的结构元素element,其大小应足够大以保留图像中的字符笔划,然而又恰好能检测出图像中最短的表格线. 定义如下两个结构element用以检测图中水平.竖直的表格线: Mat element1 = getStructuringElement(MORPH_RECT, Size(70, 1));// size的width应大于图像中的横向笔划 Mat element3 = getStructur

随机推荐