深入分析java并发编程中volatile的实现原理

引言

在多线程并发编程中synchronized和Volatile都扮演着重要的角色,Volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的“可见性”。可见性的意思是当一个线程修改一个共享变量时,另外一个线程能读到这个修改的值。它在某些情况下比synchronized的开销更小,本文将深入分析在硬件层面上Inter处理器是如何实现Volatile的,通过深入分析能帮助我们正确的使用Volatile变量。

术语定义

术语 英文单词 描述
共享变量 在多个线程之间能够被共享的变量被称为共享变量。共享变量包括所有的实例变量,静态变量和数组元素。他们都被存放在堆内存中,Volatile只作用于共享变量。
内存屏障 Memory Barriers 是一组处理器指令,用于实现对内存操作的顺序限制。
缓冲行 Cache line 缓存中可以分配的最小存储单位。处理器填写缓存线时会加载整个缓存线,需要使用多个主内存读周期。
原子操作 Atomic operations 不可中断的一个或一系列操作。
缓存行填充 cache line fill 当处理器识别到从内存中读取操作数是可缓存的,处理器读取整个缓存行到适当的缓存(L1,L2,L3的或所有)
缓存命中 cache hit 如果进行高速缓存行填充操作的内存位置仍然是下次处理器访问的地址时,处理器从缓存中读取操作数,而不是从内存。
写命中 write hit 当处理器将操作数写回到一个内存缓存的区域时,它首先会检查这个缓存的内存地址是否在缓存行中,如果存在一个有效的缓存行,则处理器将这个操作数写回到缓存,而不是写回到内存,这个操作被称为写命中。
写缺失 write misses the cache 一个有效的缓存行被写入到不存在的内存区域。

Volatile的官方定义

Java语言规范第三版中对volatile的定义如下: java编程语言允许线程访问共享变量,为了确保共享变量能被准确和一致的更新,线程应该确保通过排他锁单独获得这个变量。Java语言提供了volatile,在某些情况下比锁更加方便。如果一个字段被声明成volatile,java线程内存模型确保所有线程看到这个变量的值是一致的。

为什么要使用Volatile

Volatile变量修饰符如果使用恰当的话,它比synchronized的使用和执行成本会更低,因为它不会引起线程上下文的切换和调度。

Volatile的实现原理

那么Volatile是如何来保证可见性的呢?在x86处理器下通过工具获取JIT编译器生成的汇编指令来看看对Volatile进行写操作CPU会做什么事情。

Java代码: instance = new Singleton();//instance是volatile变量
汇编代码: 0x01a3de1d: movb $0×0,0×1104800(%esi);0x01a3de24: lock addl $0×0,(%esp);

有volatile变量修饰的共享变量进行写操作的时候会多第二行汇编代码,通过查IA-32架构软件开发者手册可知,lock前缀的指令在多核处理器下会引发了两件事情。

将当前处理器缓存行的数据会写回到系统内存。
这个写回内存的操作会引起在其他CPU里缓存了该内存地址的数据无效。
处理器为了提高处理速度,不直接和内存进行通讯,而是先将系统内存的数据读到内部缓存(L1,L2或其他)后再进行操作,但操作完之后不知道何时会写到内存,如果对声明了Volatile变量进行写操作,JVM就会向处理器发送一条Lock前缀的指令,将这个变量所在缓存行的数据写回到系统内存。但是就算写回到内存,如果其他处理器缓存的值还是旧的,再执行计算操作就会有问题,所以在多处理器下,为了保证各个处理器的缓存是一致的,就会实现缓存一致性协议,每个处理器通过嗅探在总线上传播的数据来检查自己缓存的值是不是过期了,当处理器发现自己缓存行对应的内存地址被修改,就会将当前处理器的缓存行设置成无效状态,当处理器要对这个数据进行修改操作的时候,会强制重新从系统内存里把数据读到处理器缓存里。

这两件事情在IA-32软件开发者架构手册的第三册的多处理器管理章节(第八章)中有详细阐述。

Lock前缀指令会引起处理器缓存回写到内存。Lock前缀指令导致在执行指令期间,声言处理器的 LOCK# 信号。在多处理器环境中,LOCK# 信号确保在声言该信号期间,处理器可以独占使用任何共享内存。(因为它会锁住总线,导致其他CPU不能访问总线,不能访问总线就意味着不能访问系统内存),但是在最近的处理器里,LOCK#信号一般不锁总线,而是锁缓存,毕竟锁总线开销比较大。在8.1.4章节有详细说明锁定操作对处理器缓存的影响,对于Intel486和Pentium处理器,在锁操作时,总是在总线上声言LOCK#信号。但在P6和最近的处理器中,如果访问的内存区域已经缓存在处理器内部,则不会声言LOCK#信号。相反地,它会锁定这块内存区域的缓存并回写到内存,并使用缓存一致性机制来确保修改的原子性,此操作被称为“缓存锁定”,缓存一致性机制会阻止同时修改被两个以上处理器缓存的内存区域数据。

一个处理器的缓存回写到内存会导致其他处理器的缓存无效。IA-32处理器和Intel 64处理器使用MESI(修改,独占,共享,无效)控制协议去维护内部缓存和其他处理器缓存的一致性。在多核处理器系统中进行操作的时候,IA-32 和Intel 64处理器能嗅探其他处理器访问系统内存和它们的内部缓存。它们使用嗅探技术保证它的内部缓存,系统内存和其他处理器的缓存的数据在总线上保持一致。例如在Pentium和P6 family处理器中,如果通过嗅探一个处理器来检测其他处理器打算写内存地址,而这个地址当前处理共享状态,那么正在嗅探的处理器将无效它的缓存行,在下次访问相同内存地址时,强制执行缓存行填充。

Volatile的使用优化

著名的Java并发编程大师Doug lea在JDK7的并发包里新增一个队列集合类LinkedTransferQueue,他在使用Volatile变量时,用一种追加字节的方式来优化队列出队和入队的性能。

追加字节能优化性能?这种方式看起来很神奇,但如果深入理解处理器架构就能理解其中的奥秘。让我们先来看看LinkedTransferQueue这个类,它使用一个内部类类型来定义队列的头队列(Head)和尾节点(tail),而这个内部类PaddedAtomicReference相对于父类AtomicReference只做了一件事情,就将共享变量追加到64字节。我们可以来计算下,一个对象的引用占4个字节,它追加了15个变量共占60个字节,再加上父类的Value变量,一共64个字节。

/** head of the queue */
private transient final PaddedAtomicReference<QNode> head;
/** tail of the queue */
private transient final PaddedAtomicReference<QNode> tail;
static final class PaddedAtomicReference <T> extends AtomicReference <T> {
	// enough padding for 64bytes with 4byte refs
	Object p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
	PaddedAtomicReference(T r) {
		super(r);
	}
}
public class AtomicReference <V> implements java.io.Serializable {
	private volatile V value;
	//省略其他代码
	}

为什么追加64字节能够提高并发编程的效率呢? 因为对于英特尔酷睿i7,酷睿, Atom和NetBurst, Core Solo和Pentium M处理器的L1,L2或L3缓存的高速缓存行是64个字节宽,不支持部分填充缓存行,这意味着如果队列的头节点和尾节点都不足64字节的话,处理器会将它们都读到同一个高速缓存行中,在多处理器下每个处理器都会缓存同样的头尾节点,当一个处理器试图修改头接点时会将整个缓存行锁定,那么在缓存一致性机制的作用下,会导致其他处理器不能访问自己高速缓存中的尾节点,而队列的入队和出队操作是需要不停修改头接点和尾节点,所以在多处理器的情况下将会严重影响到队列的入队和出队效率。Doug lea使用追加到64字节的方式来填满高速缓冲区的缓存行,避免头接点和尾节点加载到同一个缓存行,使得头尾节点在修改时不会互相锁定。

那么是不是在使用Volatile变量时都应该追加到64字节呢?不是的。在两种场景下不应该使用这种方式。第一:缓存行非64字节宽的处理器,如P6系列和奔腾处理器,它们的L1和L2高速缓存行是32个字节宽。第二:共享变量不会被频繁的写。因为使用追加字节的方式需要处理器读取更多的字节到高速缓冲区,这本身就会带来一定的性能消耗,共享变量如果不被频繁写的话,锁的几率也非常小,就没必要通过追加字节的方式来避免相互锁定。

总结

以上就是本文关于深入分析java并发编程中Volatile的实现原理的全部内容,希望对大家有所帮助。感兴趣的朋友欢迎继续参阅本站:

聊聊Java并发中的Synchronized

Java并发实例之CyclicBarrier的使用

java并发学习之BlockingQueue实现生产者消费者详解

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

(0)

相关推荐

  • Java多线程并发编程 Volatile关键字

    volatile 关键字是一个神秘的关键字,也许在 J2EE 上的 JAVA 程序员会了解多一点,但在 Android 上的 JAVA 程序员大多不了解这个关键字.只要稍了解不当就好容易导致一些并发上的错误发生,例如好多人把 volatile 理解成变量的锁.(并不是) volatile 的特性: 具备可见性 保证不同线程对被 volatile 修饰的变量的可见性. 有一被 volatile 修饰的变量 i,在一个线程中修改了此变量 i,对于其他线程来说 i 的修改是立即可见的. 如: vola

  • Java 并发编程:volatile的使用及其原理解析

    Java并发编程系列[未完]: •Java 并发编程:核心理论 •Java并发编程:Synchronized及其实现原理 •Java并发编程:Synchronized底层优化(轻量级锁.偏向锁) •Java 并发编程:线程间的协作(wait/notify/sleep/yield/join) •Java 并发编程:volatile的使用及其原理 一.volatile的作用 在<Java并发编程:核心理论>一文中,我们已经提到过可见性.有序性及原子性问题,通常情况下我们可以通过Synchroniz

  • Java并发编程之volatile变量介绍

    volatile提供了弱同步机制,用来确保将变量更新通知到其它线程.volatile变量不会被缓存在寄存器中或者对其它处理器不可见的地方,因此在读取volatile变量时总会返回最新写入的值.可以想象成如下语义,然而volatile是更轻量级的同步机制.volatile只能确保可见性,但不能保证原子性.也就是说不能在复合操作用volatile变量,比如i++. 复制代码 代码如下: public synchronized void setValue(int value){ this.value

  • Java并发编程:volatile关键字详细解析

    volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在Java 5之后,volatile关键字才得以重获生机. volatile关键字虽然从字面上理解起来比较简单,但是要用好不是一件容易的事情.由于volatile关键字是与Java的内存模型有关的,因此在讲述volatile关键之前,我们先来了解一下与内存模型相关的概念和知识,然后分析了volatile关键字的实现原理,最后给出了几个使用vola

  • 深入分析java并发编程中volatile的实现原理

    引言 在多线程并发编程中synchronized和Volatile都扮演着重要的角色,Volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的"可见性".可见性的意思是当一个线程修改一个共享变量时,另外一个线程能读到这个修改的值.它在某些情况下比synchronized的开销更小,本文将深入分析在硬件层面上Inter处理器是如何实现Volatile的,通过深入分析能帮助我们正确的使用Volatile变量. 术语定义 术语 英文单词 描述 共享变量 在多个线

  • java并发编程关键字volatile保证可见性不保证原子性详解

    目录 关于可见性 关于指令重排 volatile关键字可以说是Java虚拟机提供的最轻量级的同步机制,但对于为什么它只能保证可见性,不保证原子性,它又是如何禁用指令重排的,还有很多同学没彻底理解 相信我,坚持看完这篇文章,你将牢牢掌握一个Java核心知识点 先说它的两个作用: 保证变量在内存中对线程的可见性禁用指令重排 每个字都认识,凑在一起就麻了 这两个作用通常很不容易被我们Java开发人员正确.完整地理解,以至于许多同学不能正确地使用volatile 关于可见性 不多bb,码来 public

  • Java 并发编程中如何创建线程

    简介 线程是基本的调度单位,它被包含在进程之中,是进程中的实际运作单位,它本身是不会独立存在.一个进程至少有一个线程,进程中的多个线程共享进程的资源. Java中创建线程的方式有多种如继承Thread类.实现Runnable接口.实现Callable接口以及使用线程池的方式,线程池将在后面文章中单独介绍,这里先介绍另外三种方式. 继承Thread类 优点:在run方法里可以用this获取到当前线程. 缺点:由于Java不支持多继承,所以如果继承了Thread类后就不能再继承其他类. public

  • 浅析Java 并发编程中的synchronized

    synchronized关键字,我们一般称之为"同步锁",用它来修饰需要同步的方法和需要同步代码块,默认是当前对象作为锁的对象.在用synchronized修饰类时(或者修饰静态方法),默认是当前类的Class对象作为锁的对象,故存在着方法锁.对象锁.类锁这样的概念. 一.没有设置线程同步的情况 先给出以下代码感受下代码执行的时候为什么需要同步?代码可能比较枯燥,配上业务理解起来就会舒服很多,学生军训,有三列,每列5人,需要报数,每个线程负责每一列报数. class Synchroni

  • java并发编程中ReentrantLock可重入读写锁

    目录 一.ReentrantLock可重入锁 二.ReentrantReadWriteLock读写锁 三.读锁之间不互斥 一.ReentrantLock可重入锁 可重入锁ReentrantLock 是一个互斥锁,即同一时间只有一个线程能够获取锁定资源,执行锁定范围内的代码.这一点与synchronized 关键字十分相似.其基本用法代码如下: Lock lock = new ReentrantLock(); //实例化锁 //lock.lock(); //上锁 boolean locked =

  • Java并发编程中使用Executors类创建和管理线程的用法

    1. 类 Executors Executors类可以看做一个"工具类".援引JDK1.6 API中的介绍:   此包中所定义的 Executor.ExecutorService.ScheduledExecutorService.ThreadFactory 和 Callable 类的工厂和实用方法.此类支持以下各种方法: (1)创建并返回设置有常用配置字符串的 ExecutorService 的方法. (2)创建并返回设置有常用配置字符串的 ScheduledExecutorServi

  • Java并发编程中构建自定义同步工具

    当Java类库没有提供适合的同步工具时,就需要构建自定义同步工具. 可阻塞状态依赖操作的结构 复制代码 代码如下: acquir lock on object state;//请求获取锁 while(precondition does not hold){//没有满足前提条件    release lock;//先释放锁    wait until precondition might hold;//等待满足前提条件    optionlly fail if interrupted or tim

  • Java并发编程中的生产者与消费者模型简述

    概述 对于多线程程序来说,生产者和消费者模型是非常经典的模型.更加准确的说,应该叫"生产者-消费者-仓库模型".离开了仓库,生产者.消费者就缺少了共用的存储空间,也就不存在并非协作的问题了. 示例 定义一个场景.一个仓库只允许存放10件商品,生产者每次可以向其中放入一个商品,消费者可以每次从其中取出一个商品.同时,需要注意以下4点: 1.  同一时间内只能有一个生产者生产,生产方法需要加锁synchronized. 2.  同一时间内只能有一个消费者消费,消费方法需要加锁synchro

  • java并发编程之同步器代码示例

    同步器是一些使线程能够等待另一个线程的对象,允许它们协调动作.最常用的同步器是CountDownLatch和Semaphore,不常用的是Barrier和Exchanger 队列同步器AbstractQueuedSynchronizer是用来构建锁或者其他同步组件的基础框架,它内部使用了一个volatiole修饰的int类型的成员变量state来表示同步状态,通过内置的FIFO队列来完成资源获取线程的排队工作. 同步器的主要使用方式是继承,子类通过继承同步器并实现它的抽象方法来管理同步状态,在抽

随机推荐