Python多进程原理与用法分析

本文实例讲述了Python多进程原理与用法。分享给大家供大家参考,具体如下:

进程是程序在计算机上的一次执行活动。当你运行一个程序,你就启动了一个进程。显然,程序是死的(静态的),进程是活的(动态的)。进程可以分为系统进程和用户进程。凡是用于完成操作系统的各种功能的进程就是系统进程,它们就是处于运行状态下的操作系统本身;所有由你启动的进程都是用户进程。进程是操作系统进行资源分配的单位。

开启一个进程

import multiprocessing,time,os
def runtask():
  time.sleep(2)
  print("开启一个进程:%s"%os.getpid())
if __name__ == "__main__":
  p = multiprocessing.Process(target=runtask,)
  p.start()

进程队列

import multiprocessing
def runtask():
  q.put([42,"python"])
if __name__ == "__main__":
  q = multiprocessing.Queue()
  p = multiprocessing.Process(target=runtask,)
  p.start()
  print(q.get())   # 打印结果:[42,"python"]

pipe管道

返回两个连接对象。代表管道的两端,默认双向通信。

import multiprocessing
def runtask():
  conn.send("abc")
  conn.close()
if __name__ == "__main__":
  conn,pconn = multiprocessing.Pipe()
  p = multiprocessing.Process()
  p.start()
  print(pconn.recv())   # 打印结果:"abc"

Value、Array

共享内存有两个结构,一个是Value,一个是Array,这两个结构内部都实现了锁机制,因此进程是安全的。

import multiprocess
def runtask():
  d.value = 50
  for index in range(len(a)):
    a[index]+=10
if __name__ == "__main__":
  # 下面的字符"d"、"i"似乎是固定的,换成其他将会报错。求大神解释
  d = Value("d",20)
  a = Array("i",range(10))
  p = multiprocessing.Process(target=runtask,)
  p.start()
  p.join()  # 等待进程执行完毕
  print(d.value,a[:])   # 打印结果: 50.0 [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Manager

Python实现多进程之间通信除了Queue(队列)、Pipe(管道)和Value-Array之外,还提供了更高层次的封装。Manager支持的类型非常多,如:list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Queue, Value 和 Array 用法如下:

import multiprocessing
def runtask():
  d["name"] = "laowang"
  l.reverse()
if __name__ == "__main__":
  with multiprocessing.Manager() as manager:
    d = manager.dict()
    l = manager.list(range(10))
    p = multiprocessing.Process(target=runtask,)
    p.start()
    p.join()    # 等待进程执行完毕
    print(d,l)   # 打印结果:{'name': 'laowang'} [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

进程池Pool

Pool 是进程池,进程池能够管理一定的进程,当有空闲进程时,则利用空闲进程完成任务,直到所有任务完成为止

import multiprocessing
def runtask():
  pass
def callBackTask(arg):     # 回调函数必须要有一个形参,否则将报错
  print("执行回调函数",arg)
if __name__ == "__main__":
  pool = multiprocessing.Pool(5)   # 设置进程池最大同时执行进程数
  for index in range(20):
    pool.apply_async(func=runtask,callback=callBackTask)  # 并行的,有回调方法
    # pool.apply(func=runtask,)    # 串行的,无回调函数
  pool.close()  # 关闭进程池
  pool.join()   # #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束

执行结果:apply方法效果为一个进行接一个进程的执行,而apply_async是同时有5个进程在执行。

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python Socket编程技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python多进程并发(multiprocessing)用法实例详解

    本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

  • Python多进程并发与多线程并发编程实例总结

    本文实例总结了Python多进程并发与多线程并发.分享给大家供大家参考,具体如下: 这里对python支持的几种并发方式进行简单的总结. Python支持的并发分为多线程并发与多进程并发(异步IO本文不涉及).概念上来说,多进程并发即运行多个独立的程序,优势在于并发处理的任务都由操作系统管理,不足之处在于程序与各进程之间的通信和数据共享不方便:多线程并发则由程序员管理并发处理的任务,这种并发方式可以方便地在线程间共享数据(前提是不能互斥).Python对多线程和多进程的支持都比一般编程语言更高级

  • Python并发之多进程的方法实例代码

    一,进程的理论基础 一个应用程序,归根结底是一堆代码,是静态的,而进程才是执行中的程序,在一个程序运行的时候会有多个进程并发执行. 进程和线程的区别: 进程是系统资源分配的基本单位. 一个进程内可以包含多个线程,属于一对多的关系,进程内的资源,被其内的线程共享 线程是进程运行的最小单位,如果说进程是完成一个功能,那么其线程就是完成这个功能的基本单位 进程间资源不共享,多进程切换资源开销,难度大,同一进程内的线程资源共享,多线程切换资源开销,难度小 进程与线程的共同点: 都是为了提高程序运行效率,

  • python并发编程之多进程、多线程、异步和协程详解

    最近学习python并发,于是对多进程.多线程.异步和协程做了个总结. 一.多线程 多线程就是允许一个进程内存在多个控制权,以便让多个函数同时处于激活状态,从而让多个函数的操作同时运行.即使是单CPU的计算机,也可以通过不停地在不同线程的指令间切换,从而造成多线程同时运行的效果. 多线程相当于一个并发(concunrrency)系统.并发系统一般同时执行多个任务.如果多个任务可以共享资源,特别是同时写入某个变量的时候,就需要解决同步的问题,比如多线程火车售票系统:两个指令,一个指令检查票是否卖完

  • Python控制多进程与多线程并发数总结

    一.前言 本来写了脚本用于暴力破解密码,可是1秒钟尝试一个密码2220000个密码我的天,想用多线程可是只会一个for全开,难道开2220000个线程吗?只好学习控制线程数了,官方文档不好看,觉得结构不够清晰,网上找很多文章也都不很清晰,只有for全开线程,没有控制线程数的具体说明,最终终于根据多篇文章和官方文档算是搞明白基础的多线程怎么实现法了,怕长时间不用又忘记,找着麻烦就贴这了,跟我一样新手也可以参照参照. 先说进程和线程的区别: 地址空间:进程内的一个执行单元;进程至少有一个线程;它们共

  • Python 多进程并发操作中进程池Pool的实例

    在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间.当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,10几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,这时候进程池Pool发挥作用的时候就到了. Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求:但如果池中的进程数已经达到规定

  • Python多进程与服务器并发原理及用法实例分析

    本文实例分析了Python多进程与服务器并发原理及用法.分享给大家供大家参考,具体如下: 进程 什么是进程 进程:正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 进程与程序的区别 程序仅仅只是一堆代码而已,而进程指的是程序的运行过程. 并发与并行 无论是并行还是并发,在用户看来都是'同时'运行的,不管是进程还是线程,都只是一个任务而已,真是干活的是cpu,cpu来做这些任务,而一个cpu同一时刻只能执行一个任务 一 并发:是伪并行,即看起来是同时运行.单个cpu+多道技术就可以实现

  • 理论讲解python多进程并发编程

    一.什么是进程 进程:正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 二.进程与程序的区别 程序:仅仅是一堆代 进程:是指打开程序运行的过程 三.并发与并行 并发与并行是指cpu运行多个程序的方式 不管是并行与并发,在用户看起来都是'同时'运行的,他们都只是一个任务而已,正在干活的是cpu,而一个cpu只能执行一个任务. 并行就相当于有好多台设备,可以同时供好多人使用. 而并发就相当于只有一台设备,供几个人轮流用,每个人用一会就换另一个人. 所以只有多个cpu才能实现并行,而一个c

  • Python多进程库multiprocessing中进程池Pool类的使用详解

    问题起因 最近要将一个文本分割成好几个topic,每个topic设计一个regressor,各regressor是相互独立的,最后汇总所有topic的regressor得到总得预测结果.没错!类似bagging ensemble!只是我没有抽样.文本不大,大概3000行,topic个数为8,于是我写了一个串行的程序,一个topic算完之后再算另一个topic.可是我在每个topic中用了GridSearchCV来调参,又要选特征又要调整regressor的参数,导致参数组合一共有1782种.我真

  • Python3多进程 multiprocessing 模块实例详解

    本文实例讲述了Python3多进程 multiprocessing 模块.分享给大家供大家参考,具体如下: 多进程 Multiprocessing 模块 multiprocessing 模块官方说明文档 Process 类 Process 类用来描述一个进程对象.创建子进程的时候,只需要传入一个执行函数和函数的参数即可完成 Process 示例的创建. star() 方法启动进程, join() 方法实现进程间的同步,等待所有进程退出. close() 用来阻止多余的进程涌入进程池 Pool 造

随机推荐