pandas读取CSV文件时查看修改各列的数据类型格式

下面给大家介绍下pandas读取CSV文件时查看修改各列的数据类型格式,具体内容如下所述:

我们在调bug的时候会经常查看、修改pandas列数据的数据类型,今天就总结一下:

1.查看:

Numpy和Pandas的查看方式略有不同,一个是dtype,一个是dtypes

print(Array.dtype)
#输出int64
print(df.dtypes)
#输出Df下所有列的数据格式 a:int64,b:int64

2.修改

import pandas as pd
import numpy as np
df = pd.read_csv('000917.csv',encoding='gbk')
df = df[df['涨跌幅']!='None']
df['涨跌幅'] = df['涨跌幅'].astype(np.float64)

print(df[df['涨跌幅']>5])

ps:在Pandas中更改列的数据类型

先看一个非常简单的例子:

a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
df = pd.DataFrame(a)

有什么方法可以将列转换为适当的类型?例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?理想情况下,希望以动态的方式做到这一点,因为可以有数百个列,明确指定哪些列是哪种类型太麻烦。可以假定每列都包含相同类型的值。

解决方法

可以用的方法简单列举如下:

对于创建DataFrame的情形

如果要创建一个DataFrame,可以直接通过dtype参数指定类型:

df = pd.DataFrame(a, dtype='float') #示例1
df = pd.DataFrame(data=d, dtype=np.int8) #示例2
df = pd.read_csv("somefile.csv", dtype = {'column_name' : str})

对于单列或者Series

下面是一个字符串Seriess的例子,它的dtype为object:

>>> s = pd.Series(['1', '2', '4.7', 'pandas', '10'])
>>> s
0     1
1     2
2    4.7
3  pandas
4    10
dtype: object

使用to_numeric转为数值。默认情况下,它不能处理字母型的字符串'pandas':

>>> pd.to_numeric(s) # or pd.to_numeric(s, errors='raise')
ValueError: Unable to parse string

可以将无效值强制转换为NaN,如下所示:

>>> pd.to_numeric(s, errors='coerce')
0   1.0
1   2.0
2   4.7
3   NaN
4  10.0
dtype: float64

如果遇到无效值,第三个选项就是忽略该操作:

>>> pd.to_numeric(s, errors='ignore')
# the original Series is returned untouched

对于多列或者整个DataFrame
如果想要将这个操作应用到多个列,依次处理每一列是非常繁琐的,所以可以使用DataFrame.apply处理每一列。

对于某个DataFrame:

>>> a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
>>> df = pd.DataFrame(a, columns=['col1','col2','col3'])
>>> df
 col1 col2 col3
0  a 1.2  4.2
1  b  70 0.03
2  x  5   0

然后可以写:

df[['col2','col3']] = df[['col2','col3']].apply(pd.to_numeric)

那么'col2'和'col3'根据需要具有float64类型。

但是,可能不知道哪些列可以可靠地转换为数字类型。在这种情况下,设置参数:

df.apply(pd.to_numeric, errors='ignore')

然后该函数将被应用于整个DataFrame,可以转换为数字类型的列将被转换,而不能(例如,它们包含非数字字符串或日期)的列将被单独保留。

另外pd.to_datetime和pd.to_timedelta可将数据转换为日期和时间戳。

软转换——类型自动推断

版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。

例如,用两列对象类型创建一个DataFrame,其中一个保存整数,另一个保存整数的字符串:

>>> df = pd.DataFrame({'a': [7, 1, 5], 'b': ['3','2','1']}, dtype='object')
>>> df.dtypes
a  object
b  object
dtype: object

然后使用infer_objects(),可以将列'a'的类型更改为int64:

>>> df = df.infer_objects()
>>> df.dtypes
a   int64
b  object
dtype: object

由于'b'的值是字符串,而不是整数,因此'b'一直保留。

astype强制转换

如果试图强制将两列转换为整数类型,可以使用df.astype(int)。

示例如下:

a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']]
df = pd.DataFrame(a, columns=['one', 'two', 'three'])
df
Out[16]:
 one two three
0  a 1.2  4.2
1  b  70 0.03
2  x  5   0
df.dtypes
Out[17]:
one   object
two   object
three  object
df[['two', 'three']] = df[['two', 'three']].astype(float)
df.dtypes
Out[19]:
one    object
two   float64
three  float64

总结

以上所述是小编给大家介绍的pandas读取CSV文件时查看修改各列的数据类型格式,希望对大家有所帮助,如果有任何疑问欢迎给我留言,小编会及时回复大家的!

(0)

相关推荐

  • 利用Pandas读取文件路径或文件名称包含中文的csv文件方法

    利用Pandas的read_csv函数导入数据文件时,若文件路径或文件名包含中文,会报错,无法导入: import pandas as pd df=pd.read_csv('E:/学习相关/Python/数据样例/用户侧数据/账单.csv') 解决方法如下: import pandas as pd f=open('E:/学习相关/Python/数据样例/用户侧数据/账单.csv') df=pd.read_csv(f) 以上这篇利用Pandas读取文件路径或文件名称包含中文的csv文件方法就是小编

  • 使用pandas模块读取csv文件和excel表格,并用matplotlib画图的方法

    如下所示: # coding=utf-8 import pandas as pd # 读取csv文件 3列取名为 name,sex,births,后面参数格式为names= names1880 = pd.read_csv("names_1880.txt", names=['name', 'sex', 'births']) print names1880 print names1880.groupby('sex').births.sum() 输出如下 最后一行是说按sex分组并计算bir

  • 使用pandas将numpy中的数组数据保存到csv文件的方法

    接触pandas之后感觉它的很多功能似乎跟numpy有一定的重复,尤其是各种运算.不过,简单的了解之后发现在数据管理上pandas有着更为丰富的管理方式,其中一个很大的优点就是多出了对数据文件的管理. 如果想保存numpy中的数组元素到一个文件中,通过纯Python的文件写入当然是可以实现的,但是总觉得是少了一点便捷性.在这方面,pandas工具的使用就会让工作方便很多.下面通过一个简单的小例子来演示一下. 首先,创建numpy中的数组. In [18]: arr1 = np.arange(10

  • 解决pandas使用read_csv()读取文件遇到的问题

    如下: 数据文件: 上海机场 (sh600009) 24.11 3.58 东风汽车 (sh600006) 74.25 1.74 中国国贸 (sh600007) 26.38 2.66 包钢股份 (sh600010) 61.01 2.35 武钢股份 (sh600005) 75.85 1.3 浦发银行 (sh600000) 6.65 0.96 在使用read_csv() API读取CSV文件时求取某一列数据比较大小时, df=pd.read_csv(output_file,encoding='gb23

  • python的pandas工具包,保存.csv文件时不要表头的实例

    用pandas处理.csv文件时,有时我们希望保存的.csv文件没有表头,于是我去看了DataFrame.to_csv的document. 发现只需要再添加header=None这个参数就行了(默认是True), 下面贴上document: DataFrame.to_csv(path_or_buf=None, sep=', ', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=Non

  • Python使用pandas处理CSV文件的实例讲解

    Python中有许多方便的库可以用来进行数据处理,尤其是Numpy和Pandas,再搭配matplot画图专用模块,功能十分强大. CSV(Comma-Separated Values)格式的文件是指以纯文本形式存储的表格数据,这意味着不能简单的使用Excel表格工具进行处理,而且Excel表格处理的数据量十分有限,而使用Pandas来处理数据量巨大的CSV文件就容易的多了. 我用到的是自己用其他硬件工具抓取得数据,硬件环境是在Linux平台上搭建的,当时数据是在运行脚本后直接输出在termin

  • 使用pandas读取csv文件的指定列方法

    根据教程实现了读取csv文件前面的几行数据,一下就想到了是不是可以实现前面几列的数据.经过多番尝试总算试出来了一种方法. 之所以想实现读取前面的几列是因为我手头的一个csv文件恰好有后面几列没有可用数据,但是却一直存在着.原来的数据如下: GreydeMac-mini:chapter06 greyzhang$ cat data.csv 1,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,coment_03,,,, 4,name_04

  • pandas读取CSV文件时查看修改各列的数据类型格式

    下面给大家介绍下pandas读取CSV文件时查看修改各列的数据类型格式,具体内容如下所述: 我们在调bug的时候会经常查看.修改pandas列数据的数据类型,今天就总结一下: 1.查看: Numpy和Pandas的查看方式略有不同,一个是dtype,一个是dtypes print(Array.dtype) #输出int64 print(df.dtypes) #输出Df下所有列的数据格式 a:int64,b:int64 2.修改 import pandas as pd import numpy a

  • ​python中pandas读取csv文件​时如何省去csv.reader()操作指定列步骤

    优点: 方便,有专门支持读取csv文件的pd.read_csv()函数. 将csv转换成二维列表形式 支持通过列名查找特定列. 相比csv库,事半功倍 1.读取csv文件 import pandas as pd   file="c:\data\test.csv" csvPD=pd.read_csv(file)   df = pd.read_csv('data.csv', encoding='gbk') #指定编码     read_csv()方法参数介绍 filepath_or_buf

  • 解决Python中pandas读取*.csv文件出现编码问题

    1.问题 在使用Python中pandas读取csv文件时,由于文件编码格式出现以下问题: Traceback (most recent call last): File "pandas\_libs\parsers.pyx", line 1134, in pandas._libs.parsers.TextReader._convert_tokens File "pandas\_libs\parsers.pyx", line 1240, in pandas._libs

  • Python pandas读取CSV文件的注意事项(适合新手)

    目录 前言 示例文件 文件编码 空值 日期错误 函数映射 方法1:直接使用labmda表达式 方法二:使用自定义函数 方法三:使用数值字典映射 总结 前言 本文是给使用pandas的新手而写,主要列出一些常见的问题,根据笔者所踩过的坑,进行归纳总结,希望对读者有所帮助. 示例文件 将以下内容保存为文件 people.csv. id,姓名,性别,出生日期,出生地,职业,爱好 1,张小三,m,1992-10-03,北京,工程师,足球 2,李云义,m,1995-02-12,上海,程序员,读书 下棋 3

  • python 使用pandas读取csv文件的方法

    目录 pandas读取csv文件的操作 1. 读取csv文件 在这里记录一下,python使用pandas读取文件的方法用到pandas库的read_csv函数 # -*- coding: utf-8 -*- """ Created on Mon Jan 24 16:48:32 2022 @author: zxy """ # 导入包 import numpy as np import pandas as pd import matplotlib.

  • 基于Pandas读取csv文件Error的总结

    OSError:报错1 <span style="font-size:14px;">pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader.__cinit__ (pandas\_libs\parsers.c:4209)() pandas\_libs\parsers.pyx in pandas._libs.parsers.TextReader._setup_parser_source (pandas\_libs\

  • pandas读取csv文件,分隔符参数sep的实例

    在python中读取csv文件时,一般操作如下: import pandas as pd pd.read_csv(filename) 该读文件方式,默认是以逗号","作为分割符,若是以其它分隔符,比如制表符"/t",则需要显示的指定分隔符.如下 pd_read_csv(filename,'/t') 但如果遇见某个字段包含了"/t"的字符,比如网址"www.xxx.xx/t-",则也会把字段中的"/t"理解为

  • 使用Python pandas读取CSV文件应该注意什么?

    示例文件 将以下内容保存为文件 people.csv. id,姓名,性别,出生日期,出生地,职业,爱好 1,张小三,m,1992-10-03,北京,工程师,足球 2,李云义,m,1995-02-12,上海,程序员,读书 下棋 3,周娟,女,1998-03-25,合肥,护士,音乐,跑步 4,赵盈盈,Female,2001-6-32,,学生,画画 5,郑强强,男,1991-03-05,南京(nanjing),律师,历史-政治 如果一切正常的话,在Jupyter Notebook 中应该显示以下内容:

  • Python如何读取csv文件时添加表头/列名

    目录 读取csv文件时添加表头/列名 解决方法 更改csv文件表头 读取csv文件时添加表头/列名 有时,我们读取的csv文件数据时发现没有表头/列名,是因为Python读取csv文件数据本来就没有表头,用pandas.read读取时,则第一行自动会被识别为columns,从而给后面的分析造成不便,这时候需要我们在读取文件数据的同时添加列名. 解决方法 1.在读取文件数据之后再定义列名 df = pd.read_csv('评论.csv',header=None) df.columns = ["昵

随机推荐