python对验证码降噪的实现示例代码

前言:

最近写爬虫会经常遇到一些验证码识别的问题,现如今的验证码已经是五花八门,刚开始的验证码就是简单的对生成的验证码图片进行一些干扰,但是随着计算机视觉库的 发展壮大,可以轻松解决简单的验证码识别问题,于是一些变态 的验证码就出来了,什么滑动验证码,当然这个也是比较好解决的,用python的selenium库就可以破解一些滑动验证码。可是还出现了一些语音类,点击类的验证码。爬虫与反爬的较量确实越来越精彩了,也挺有趣的!最终促进的是整个行业技术的发展与进步。

今天分享一个可以解决简单验证码识别的代码。

图片:

图像灰度化处理

import cv2
import numpy as np
img = cv2.imread('./picture/1.jpg')

#将图片灰度化处理,降维,加权进行灰度化c
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow('min_gray',gray)

cv2.waitKey(0)

cv2.destroyAllWindows()

效果:

图像二值化处理

t,gray2 = cv2.threshold(gray,220,255,cv2.THRESH_BINARY)
cv2.imshow('threshold',gray2)

cv2.waitKey(0)

cv2.destroyAllWindows()

效果:

8领域过滤

def remove_noise(img,k=4):

  img2 = img.copy()

#   img处理数据,k过滤条件
  w,h = img2.shape
  def get_neighbors(img3,r,c):
    count = 0
    for i in [r-1,r,r+1]:
      for j in [c-1,c,c+1]:
        if img3[i,j] > 10:#纯白色
          count+=1
    return count
#   两层for循环判断所有的点
  for x in range(w):
    for y in range(h):
      if x == 0 or y == 0 or x == w -1 or y == h -1:
        img2[x,y] = 255
      else:
        n = get_neighbors(img2,x,y)#获取邻居数量,纯白色的邻居
        if n > k:
          img2[x,y] = 255
  return img2
result = remove_noise(gray2)
cv2.imshow('8neighbors',result)

cv2.waitKey(0)

cv2.destroyAllWindows()

过滤后的效果:

代码整合:

import cv2
import numpy as np
img = cv2.imread('./picture/1.jpg')

#将图片灰度化处理,降维,加权进行灰度化c
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
t,gray2 = cv2.threshold(gray,200,255,cv2.THRESH_BINARY)
cv2.imshow('threshold',gray2)
result = remove_noise(gray2)
cv2.imshow('8neighbors',result)

cv2.waitKey(0)

cv2.destroyAllWindows()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • python验证码识别教程之灰度处理、二值化、降噪与tesserocr识别

    前言 写爬虫有一个绕不过去的问题就是验证码,现在验证码分类大概有4种: 图像类 滑动类 点击类 语音类 今天先来看看图像类,这类验证码大多是数字.字母的组合,国内也有使用汉字的.在这个基础上增加噪点.干扰线.变形.重叠.不同字体颜色等方法来增加识别难度. 相应的,验证码识别大体可以分为下面几个步骤: 灰度处理 增加对比度(可选) 二值化 降噪 倾斜校正分割字符 建立训练库 识别 由于是实验性质的,文中用到的验证码均为程序生成而不是批量下载真实的网站验证码,这样做的好处就是可以有大量的知道明确结果

  • python对验证码降噪的实现示例代码

    前言: 最近写爬虫会经常遇到一些验证码识别的问题,现如今的验证码已经是五花八门,刚开始的验证码就是简单的对生成的验证码图片进行一些干扰,但是随着计算机视觉库的 发展壮大,可以轻松解决简单的验证码识别问题,于是一些变态 的验证码就出来了,什么滑动验证码,当然这个也是比较好解决的,用python的selenium库就可以破解一些滑动验证码.可是还出现了一些语音类,点击类的验证码.爬虫与反爬的较量确实越来越精彩了,也挺有趣的!最终促进的是整个行业技术的发展与进步. 今天分享一个可以解决简单验证码识别的

  • python 模拟登录B站的示例代码

    需要将模拟的浏览器,添加到环境变量中哦.代码中用的是chrome from selenium import webdriver from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.webdriv

  • Python图片验证码降噪和8邻域降噪

    目录 Python图片验证码降噪 和8邻域降噪 一.简介 二.8邻域降噪 三.Pillow实现 四.OpenCV实现 Python图片验证码降噪 和8邻域降噪 一.简介 图片验证码识别的可以分为几个步骤,一般用 Pillow 库或 OpenCV 来实现: 1.灰度处理&二值化 2.降噪 3.字符分割 4.标准化 5.识别 所谓降噪就是把不需要的信息通通去除,比如背景,干扰线,干扰像素等等,只留下需要识别的字符,让图片变成2进制点阵,方便代入模型训练. 二.8邻域降噪 8邻域降噪 的前提是将图片灰

  • Go/Python/Erlang编程语言对比分析及示例代码

    本文主要是介绍Go,从语言对比分析的角度切入.之所以选择与Python.Erlang对比,是因为做为高级语言,它们语言特性上有较大的相似性,不过最主要的原因是这几个我比较熟悉. Go的很多语言特性借鉴与它的三个祖先:C,Pascal和CSP.Go的语法.数据类型.控制流等继承于C,Go的包.面对对象等思想来源于Pascal分支,而Go最大的语言特色,基于管道通信的协程并发模型,则借鉴于CSP分支. Go/Python/Erlang语言特性对比 如<编程语言与范式>一文所说,不管语言如何层出不穷

  • python tkinter实现界面切换的示例代码

    跳转实现思路 主程序相当于桌子: import tkinter as tk root = tk.Tk() 而不同的Frame相当于不同的桌布: face1 = tk.Frame(root) face2 = tk.Frame(root) ... 每个界面采用类的方式定义各自的控件和函数,每个界面都建立在一个各自定义的Frame上,那么在实现跳转界面的效果时, 只需要调用tkinter.destroy()方法销毁旧界面,同时生成新界面的对象,即可实现切换. 而对于切换的过程中改变背景颜色和大小,可以

  • python实现网站微信登录的示例代码

    最近微信登录开放公测,为了方便微信用户使用,我们的产品也决定加上微信登录功能,然后就有了这篇笔记. 根据需求选择相应的登录方式 python实现网站微信登录的示例代码 微信现在提供两种登录接入方式 移动应用微信登录 网站应用微信登录 这里我们使用的是网站应用微信登录 按照 官方流程 1 注册并通过开放平台开发者资质认证 注册微信开放平台帐号后,在帐号中心中填写开发者资质认证申请,并等待认证通过. 2 创建网站应用 通过填写网站应用名称.简介和图标,以及各平台下载地址等资料,创建网站应用 3 接入

  • 使用python画个小猪佩奇的示例代码

    基本原理 选好画板大小,设置好画笔颜色.粗细,定位好位置,依次画鼻子.头.耳朵.眼睛.腮.嘴.身体.手脚.尾巴,完事儿. 都知道,Turtle 是 Python 内置的一个比较有趣味的模块,俗称"海龟绘图",它是基于 Tkinter 模块打造,提供一些简单的绘图工具. 在海龟作图中,我们可以编写指令让一个虚拟的(想象中的)海龟在屏幕上来回移动.这个海龟带着一只钢笔,我们可以让海龟无论移动到哪都使用这只钢笔来绘制线条.通过编写代码,以各种很酷的模式移动海龟,我们可以绘制出令人惊奇的图片.

  • python绘制BA无标度网络示例代码

    如下所示: #Copyright (c)2017, 东北大学软件学院学生 # All rightsreserved #文件名称:a.py # 作 者:孔云 #问题描述: #问题分析:.代码如下: import networkx as ne #导入建网络模型包,命名ne import matplotlib.pyplot as mp #导入科学绘图包,命名mp #BA scale-free degree network graphy BA=ne.barabasi_albert_graph(50,1)

  • python 实现人和电脑猜拳的示例代码

    完成人机猜拳互动游戏的开发,用户通过控制台输入实现出拳,电脑通过程序中的随机数实现出拳,每一局结束后都要输出结果.当用户输入n时停止游戏,并输出总结果. import random all = ['石头','剪刀','布'] computer = random.choice(['石头','剪刀','布']) #所有赢了的情况 win = [['石头','剪刀'],['布','石头'],['剪刀','布']] class Text(): def func_play(self): ind = inp

  • Js逆向实现滑动验证码图片还原的示例代码

    本文列举两个例子:某象和某验的滑动验证 一.某验:aHR0cHM6Ly93d3cuZ2VldGVzdC5jb20vZGVtby9zbGlkZS1mbG9hdC5odG1s 未还原图像: 还原后的图: 从服务端请求来的图片是打乱后的,给用户看的时候是完整的,这个过程肯定是运行了某段js代码,将打乱的图片进行还原操作.所以我们需要找到这段js,然后还原它的代码逻辑,实现图片的还原操作,找到缺口距离,实现滑动操作. 如果你仔细观察的话,你会发现还原后的图它是canvas生成出来的 那你应该会想到,那段

随机推荐