Java 泛型实例详解

理解Java泛型最简单的方法是把它看成一种便捷语法,能节省你某些Java类型转换(casting)上的操作:

      List<Apple> box = ...;
 	Apple apple = box.get(0);

上面的代码自身已表达的很清楚:box是一个装有Apple对象的List。get方法返回一个Apple对象实例,这个过程不需要进行类型转换。没有泛型,上面的代码需要写成这样:

      List box = ...;
 	Apple apple = (Apple) box.get(0);

很明显,泛型的主要好处就是让编译器保留参数的类型信息,执行类型检查,执行类型转换操作:编译器保证了这些类型转换的绝对无误。相对于依赖程序员来记住对象类型、执行类型转换——这会导致程序运行时的失败,很难调试和解决,而编译器能够帮助程序员在编译时强制进行大量的类型检查,发现其中的错误。

泛型的构成

由泛型的构成引出了一个类型变量的概念。根据Java语言规范,类型变量是一种没有限制的标志符,产生于以下几种情况:

泛型类声明
    泛型接口声明
    泛型方法声明
    泛型构造器(constructor)声明

泛型类和接口

如果一个类或接口上有一个或多个类型变量,那它就是泛型。类型变量由尖括号界定,放在类或接口名的后面:

public interface List<T> extends Collection<T> {
	...
	}

简单的说,类型变量扮演的角色就如同一个参数,它提供给编译器用来类型检查的信息。

Java类库里的很多类,例如整个Collection框架都做了泛型化的修改。例如,我们在上面的第一段代码里用到的List接口就是一个泛型类。在那段代码里,box是一个List<Apple>对象,它是一个带有一个Apple类型变量的List接口的类实现的实例。编译器使用这个类型变量参数在get方法被调用、返回一个Apple对象时自动对其进行类型转换。

实际上,这新出现的泛型标记,或者说这个List接口里的get方法是这样的:

T get(int index);

get方法实际返回的是一个类型为T的对象,T是在List<T>声明中的类型变量。

泛型方法和构造器(Constructor)

非常的相似,如果方法和构造器上声明了一个或多个类型变量,它们也可以泛型化。

public static <t> T getFirst(List<T> list)

这个方法将会接受一个List<T>类型的参数,返回一个T类型的对象。你既可以使用Java类库里提供的泛型类,也可以使用自己的泛型类。类型安全的写入数据…下面的这段代码是个例子,我们创建了一个List<String>实例,然后装入一些数据:

List<String> str = new ArrayList<String>();
 	str.add("Hello ");
 	str.add("World.");

如果我们试图在List<String>装入另外一种对象,编译器就会提示错误:

str.add(1);

类型安全的读取数据…

当我们在使用List<String>对象时,它总能保证我们得到的是一个String对象:

String myString = str.get(0);

遍历:类库中的很多类,诸如Iterator<T>,功能都有所增强,被泛型化。List<T>接口里的iterator()方法现在返回的是Iterator<T>,由它的T next()方法返回的对象不需要再进行类型转换,你直接得到正确的类型。

for (Iterator<String> iter = str.iterator(); iter.hasNext();) {
	String s = iter.next();
	System.out.print(s);
	}

使用foreach,“for each”语法同样受益于泛型。前面的代码可以写出这样:

for (String s: str) {
	System.out.print(s);
	}

这样既容易阅读也容易维护。

自动封装(Autoboxing)和自动拆封(Autounboxing),在使用Java泛型时,autoboxing/autounboxing这两个特征会被自动的用到,就像下面的这段代码:

List<Integer> ints = new ArrayList<Integer>();
 	ints.add(0);
	ints.add(1);

	int sum = 0;
	for (int i : ints) {
 	sum += i;
 	}

然而,你要明白的一点是,封装和解封会带来性能上的损失,所有,通用要谨慎的使用。

泛型是Java SE 1.5的新特性,泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数。这种参数类型可以用在类、接口和方法的创建中,分别称为泛型类、泛型接口、泛型方法。

Java语言引入泛型的好处是安全简单。

在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,“任意化”带来的缺点是要做显式的强制类型转换,而这种转换是要求开发者对实际参数类型可以预知的情况下进行的。对于强制类型转换错误的情况,编译器可能不提示错误,在运行的时候才出现异常,这是一个安全隐患。

泛型的好处是在编译的时候检查类型安全,并且所有的强制转换都是自动和隐式的,提高代码的重用率。

泛型在使用中还有一些规则和限制:

1、泛型的类型参数只能是类类型(包括自定义类),不能是简单类型。

2、同一种泛型可以对应多个版本(因为参数类型是不确定的),不同版本的泛型类实例是不兼容的。

3、泛型的类型参数可以有多个。

4、泛型的参数类型可以使用extends语句,例如。习惯上成为“有界类型”。

5、泛型的参数类型还可以是通配符类型。例如Class classType = Class.forName(java.lang.String);

泛型还有接口、方法等等,内容很多,需要花费一番功夫才能理解掌握并熟练应用。在此给出我曾经了解泛型时候写出的两个例子(根据看的印象写的),实现同样的功能,一个使用了泛型,一个没有使用,通过对比,可以很快学会泛型的应用,学会这个基本上学会了泛型70%的内容。

例子一:使用了泛型

public class Gen﹤T﹥ {
 private T ob; //定义泛型成员变量

 public Gen(T ob) {
this.ob = ob;
 }

 public T getOb() {
return ob;
 }

 public void setOb(T ob) {
this.ob = ob;
 }

 public void showTyep() {
System.out.println("T的实际类型是: " + ob.getClass().getName());
 }
}

public class GenDemo {
 public static void main(String[] args){
 //定义泛型类Gen的一个Integer版本
 Gen﹤Integer﹥ intOb=new Gen﹤Integer﹥(88);
 intOb.showTyep();
 int i= intOb.getOb();
 System.out.println("value= " + i);

 System.out.println("----------------------------------");

 //定义泛型类Gen的一个String版本
 Gen﹤String﹥ strOb=new Gen﹤String﹥("Hello Gen!");
 strOb.showTyep();
 String s=strOb.getOb();
 System.out.println("value= " + s);
}

例子二:没有使用泛型

public class Gen2 {
 private Object ob; //定义一个通用类型成员

 public Gen2(Object ob) {
this.ob = ob;
 }

 public Object getOb() {
return ob;
 }

 public void setOb(Object ob) {
this.ob = ob;
 }

 public void showTyep() {
System.out.println("T的实际类型是: " + ob.getClass().getName());
 }
}

public class GenDemo2 {
 public static void main(String[] args) {
//定义类Gen2的一个Integer版本
Gen2 intOb = new Gen2(new Integer(88));
intOb.showTyep();
int i = (Integer) intOb.getOb();
System.out.println("value= " + i);

System.out.println("----------------------------------");

//定义类Gen2的一个String版本
Gen2 strOb = new Gen2("Hello Gen!");
strOb.showTyep();
String s = (String) strOb.getOb();
System.out.println("value= " + s);
 }
} 

运行结果:

两个例子运行Demo结果是相同的,控制台输出结果如下:

T的实际类型是:

java.lang.Integer

value= 88

----------------------------------

T的实际类型是: java.lang.String

value= Hello Gen!

Process finished with exit code 0

看明白这个,以后基本的泛型应用和代码阅读就不成问题了。

以上就是对java泛型的实例分析,学习Java泛型的朋友可以参考下。

(0)

相关推荐

  • Java中的泛型方法详解及简单实例

      java 泛型方法: 泛型是什么意思在这就不多说了,而Java中泛型类的定义也比较简单,例如:public class Test<T>{}.这样就定义了一个泛型类Test,在实例化该类时,必须指明泛型T的具体类型,例如:Test<Object> t = new Test<Object>();,指明泛型T的类型为Object. 但是Java中的泛型方法就比较复杂了. 泛型类,是在实例化类的时候指明泛型的具体类型:泛型方法,是在调用方法的时候指明泛型的具体类型.   定

  • 浅谈java中定义泛型类和定义泛型方法的写法

    1.方法中的泛型 public static <T> T backSerializable(Class<T> clazz , String path ,String fileName){ FileInputStream fis = null; ObjectInputStream ois = null; Object obj = null; try { fis = new FileInputStream(path + fileName); ois = new ObjectInputS

  • Java8中lambda表达式的应用及一些泛型相关知识

    语法部分就不写了,我们直接抛出一个实际问题,看看java8的这些新特性究竟能给我们带来哪些便利 顺带用到一些泛型编程,一切都是为了简化代码 场景: 一个数据类,用于记录职工信息 public class Employee { public String name; public int age; public char sex; public String time; public int salary; } 我们有一列此类数据 List<Employee> data = Arrays.asL

  • 浅谈Java泛型通配符解决了泛型的许多诟病(如不能重载)

    泛型: package Java基础增强; import java.util.ArrayList; import java.util.List; import org.junit.Test; public class Test2 { @Test public void fun1(){ Object[] objects = new Object[10]; List list = new ArrayList(); String[] strings = new String[10]; List<Str

  • 浅谈java泛型的作用及其基本概念

    一.泛型的基本概念 java与c#一样,都存在泛型的概念,及类型的参数化.java中的泛型是在jdk5.0后出现的,但是java中的泛型与C#中的泛型是有本质区别的,首先从集合类型上来说,java 中的ArrayList<Integer>和ArrayList<String>是同一个类型,在编译时会执行类型擦除,及java中的类型是伪泛型,伪泛型将会在后面介绍,其次,对于像集合中添加基本类型的数据时,例如int,会首先将int转化成Integer对象,即我们通常所说的装箱操作,在取出

  • Java 泛型有哪些好处详解

    java 泛型 概要: Java 泛型是java SE 1.5的新特性,泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数.这种参数类型可以用在类.接口和方法的创建中,分别称为泛型类.泛型接口.泛型方法. 泛型(Generic type 或者 generics)是对 Java 语言的类型系统的一种扩展,以支持创建可以按类型进行参数化的类.可以把类型参数看作是使用参数化类型时指定的类型的一个占位符,就像方法的形式参数是运行时传递的值的占位符一样. 可以在集合框架(Collection

  • Java泛型类型通配符和C#对比分析

    c#的泛型没有类型通配符,原因是.net的泛型是CLR支持的泛型,而Java的JVM并不支持泛型,只是语法糖,在编译器编译的时候都转换成object类型 类型通配符在java中表示的是泛型类型的父类 public void test(List<Object> c) { for(int i = 0;i < c.size();i++) { System.out.println(c.get(i)); } } //创建一个List<String>对象 List<String&g

  • 详解Java中的 枚举与泛型

    详解Java中的 枚举与泛型 一:首先从枚举开始说起 枚举类型是JDK5.0的新特征.Sun引进了一个全新的关键字enum来定义一个枚举类.下面就是一个典型枚举类型的定义: public enum Color{ RED,BLUE,BLACK,YELLOW,GREEN } 显然,enum很像特殊的class,实际上enum声明定义的类型就是一个类. 而这些类都是类库中Enum类的子类(Java.lang.Enum).它们继承了这个Enum中的许多有用的方法.我们对代码编译之后发现,编译器将 enu

  • Java 泛型实例详解

    理解Java泛型最简单的方法是把它看成一种便捷语法,能节省你某些Java类型转换(casting)上的操作: List<Apple> box = ...; Apple apple = box.get(0); 上面的代码自身已表达的很清楚:box是一个装有Apple对象的List.get方法返回一个Apple对象实例,这个过程不需要进行类型转换.没有泛型,上面的代码需要写成这样: List box = ...; Apple apple = (Apple) box.get(0); 很明显,泛型的主

  • java 泛型的详解及实例

    java 泛型的详解及实例 Java在1.5版本中增加了泛型,在没有泛型之前,从集合中读取每一个对象都需要进行强转,如果一不小心插入了类型错误的对象,在运行时就会报错,给日常开发带来了很多不必要的麻烦,比如以下代码: public class TestGeneric { public static void main(String[] args) { List list = new ArrayList(); list.add(" name:"); list.add(" zer

  • Java 多线程实例详解(三)

    本文主要接着前面多线程的两篇文章总结Java多线程中的线程安全问题. 一.一个典型的Java线程安全例子 public class ThreadTest { public static void main(String[] args) { Account account = new Account("123456", 1000); DrawMoneyRunnable drawMoneyRunnable = new DrawMoneyRunnable(account, 700); Thr

  • Java构造方法实例详解(动力节点java学院整理)

    构造函数是一种特殊的函数.其主要功能是用来在创建对象时初始化对象, 即为v对象成员变量赋初始值,总与new运算符一起使用在创建对象的语句中.构造函数与类名相同,可重载多个不同的构造函数.在JAVA语言中,构造函数与C++语言中的构造函数相同,JAVA语言中普遍称之为构造方法. 使用构造器时需要记住: 1.构造器必须与类同名(如果一个源文件中有多个类,那么构造器必须与公共类同名) 2.每个类可以有一个以上的构造器 3.构造器可以有0个.1个或1个以上的参数 4.构造器没有返回值 5.构造器总是伴随

  • C#调用Java方法实例详解

    C#可以直接引用C++的DLL和转换JAVA写好的程序.最近由于工作原因接触这方面比较多,根据实际需求,我们通过一个具体例子把一个JAVA方法转换成可以由C#直接调用的DLL C#调用c++ C#调用C++的例子网上很多,以一个C++的具体方法为例. C++代码 // 获取一帧图像数据 MVSMARTCAMCTRL_API int __stdcall MV_SC_GetOneFrame(IN void* handle, IN OUT unsigned char *pData , IN unsig

  • Java 多线程实例详解(二)

    本文承接上一篇文章<Java多线程实例详解(一)>. 四.Java多线程的阻塞状态与线程控制 上文已经提到Java阻塞的几种具体类型.下面分别看下引起Java线程阻塞的主要方法. 1.join() join -- 让一个线程等待另一个线程完成才继续执行.如A线程线程执行体中调用B线程的join()方法,则A线程被阻塞,知道B线程执行完为止,A才能得以继续执行. public class ThreadTest { public static void main(String[] args) {

  • Java异常处理实例详解

    1. 异常例子 class TestTryCatch { public static void main(String[] args){ int arr[] = new int[5]; arr[7] = 10; System.out.println("end!!!"); } } 输出:(越界) Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 7 at TestTryCatch.

  • java泛型通配符详解

    前言 Java 泛型(generics)是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制,该机制允许开发者在编译时检测到非法的类型. 泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数. 泛型带来的好处 在没有泛型的情况的下,通过对类型 Object 的引用来实现参数的"任意化","任意化"带来的缺点是要做显式的强制类型转换,而这种转换是要求开发者对实际参数类型可以预知的情况下进行的.对于强制类型转换错误的情况,编译器可能不提示错

  • Java基础之java泛型通配符详解

    前言 Java 泛型(generics)是 JDK 5 中引入的一个新特性, 泛型提供了编译时类型安全检测机制,该机制允许开发者在编译时检测到非法的类型. 泛型的本质是参数化类型,也就是说所操作的数据类型被指定为一个参数. 泛型带来的好处 在没有泛型的情况的下,通过对类型 Object 的引用来实现参数的"任意化","任意化"带来的缺点是要做显式的强制类型转换,而这种转换是要求开发者对实际参数类型可以预知的情况下进行的.对于强制类型转换错误的情况,编译器可能不提示错

  • Mysql存储java对象实例详解

    Mysql存储java对象 MySQL  设置字段为 blob 保存对象,先将对象序列化为byte[]  使用 setObject(byte[] bytes) ByteArrayOutputStream baos = new ByteArrayOutputStream(); ObjectOutputStream out = null; try { out = new ObjectOutputStream(baos); out.writeObject(java实例对象); } catch (IOE

随机推荐