c#检测文本文件编码的方法

C#如何检测文本文件的编码,本文为大家分享了示例代码,具体内容如下

using System;
using System.Text;
using System.Text.RegularExpressions;
using System.IO;

namespace KlerksSoft
{
  public static class TextFileEncodingDetector
  {
    /*
* Simple class to handle text file encoding woes (in a primarily English-speaking tech
* world).
*
* - This code is fully managed, no shady calls to MLang (the unmanaged codepage
* detection library originally developed for Internet Explorer).
*
* - This class does NOT try to detect arbitrary codepages/charsets, it really only
* aims to differentiate between some of the most common variants of Unicode
* encoding, and a "default" (western / ascii-based) encoding alternative provided
* by the caller.
*
* - As there is no "Reliable" way to distinguish between UTF-8 (without BOM) and
* Windows-1252 (in .Net, also incorrectly called "ASCII") encodings, we use a
* heuristic - so the more of the file we can sample the better the guess. If you
* are going to read the whole file into memory at some point, then best to pass
* in the whole byte byte array directly. Otherwise, decide how to trade off
* reliability against performance / memory usage.
*
* - The UTF-8 detection heuristic only works for western text, as it relies on
* the presence of UTF-8 encoded accented and other characters found in the upper
* ranges of the Latin-1 and (particularly) Windows-1252 codepages.
*
* - For more general detection routines, see existing projects / resources:
* - MLang - Microsoft library originally for IE6, available in Windows XP and later APIs now (I think?)
* - MLang .Net bindings: http://www.codeproject.com/KB/recipes/DetectEncoding.aspx
* - CharDet - Mozilla browser's detection routines
* - Ported to Java then .Net: http://www.conceptdevelopment.net/Localization/NCharDet/
* - Ported straight to .Net: http://code.google.com/p/chardetsharp/source/browse
*
* Copyright Tao Klerks, Jan 2010, tao@klerks.biz
* Licensed under the modified BSD license:
*

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
- The name of the author may not be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

*
*/

    const long _defaultHeuristicSampleSize = 0x10000; //completely arbitrary - inappropriate for high numbers of files / high speed requirements

    public static Encoding DetectTextFileEncoding(string InputFilename, Encoding DefaultEncoding)
    {
      using (FileStream textfileStream = File.OpenRead(InputFilename))
      {
        return DetectTextFileEncoding(textfileStream, DefaultEncoding, _defaultHeuristicSampleSize);
      }
    }

    public static Encoding DetectTextFileEncoding(FileStream InputFileStream, Encoding DefaultEncoding, long HeuristicSampleSize)
    {
      if (InputFileStream == null)
        throw new ArgumentNullException("Must provide a valid Filestream!", "InputFileStream");

      if (!InputFileStream.CanRead)
        throw new ArgumentException("Provided file stream is not readable!", "InputFileStream");

      if (!InputFileStream.CanSeek)
        throw new ArgumentException("Provided file stream cannot seek!", "InputFileStream");

      Encoding encodingFound = null;

      long originalPos = InputFileStream.Position;

      InputFileStream.Position = 0;

      //First read only what we need for BOM detection

      byte[] bomBytes = new byte[InputFileStream.Length > 4 ? 4 : InputFileStream.Length];
      InputFileStream.Read(bomBytes, 0, bomBytes.Length);

      encodingFound = DetectBOMBytes(bomBytes);

      if (encodingFound != null)
      {
        InputFileStream.Position = originalPos;
        return encodingFound;
      }

      //BOM Detection failed, going for heuristics now.
      // create sample byte array and populate it
      byte[] sampleBytes = new byte[HeuristicSampleSize > InputFileStream.Length ? InputFileStream.Length : HeuristicSampleSize];
      Array.Copy(bomBytes, sampleBytes, bomBytes.Length);
      if (InputFileStream.Length > bomBytes.Length)
        InputFileStream.Read(sampleBytes, bomBytes.Length, sampleBytes.Length - bomBytes.Length);
      InputFileStream.Position = originalPos;

      //test byte array content
      encodingFound = DetectUnicodeInByteSampleByHeuristics(sampleBytes);

      if (encodingFound != null)
        return encodingFound;
      else
        return DefaultEncoding;
    }

    public static Encoding DetectTextByteArrayEncoding(byte[] TextData, Encoding DefaultEncoding)
    {
      if (TextData == null)
        throw new ArgumentNullException("Must provide a valid text data byte array!", "TextData");

      Encoding encodingFound = null;

      encodingFound = DetectBOMBytes(TextData);

      if (encodingFound != null)
      {
        return encodingFound;
      }
      else
      {
        //test byte array content
        encodingFound = DetectUnicodeInByteSampleByHeuristics(TextData);

        if (encodingFound != null)
          return encodingFound;
        else
          return DefaultEncoding;
      }

    }

    public static Encoding DetectBOMBytes(byte[] BOMBytes)
    {
      if (BOMBytes == null)
        throw new ArgumentNullException("Must provide a valid BOM byte array!", "BOMBytes");

      if (BOMBytes.Length < 2)
        return null;

      if (BOMBytes[0] == 0xff
        && BOMBytes[1] == 0xfe
        && (BOMBytes.Length < 4
          || BOMBytes[2] != 0
          || BOMBytes[3] != 0
          )
        )
        return Encoding.Unicode;

      if (BOMBytes[0] == 0xfe
        && BOMBytes[1] == 0xff
        )
        return Encoding.BigEndianUnicode;

      if (BOMBytes.Length < 3)
        return null;

      if (BOMBytes[0] == 0xef && BOMBytes[1] == 0xbb && BOMBytes[2] == 0xbf)
        return Encoding.UTF8;

      if (BOMBytes[0] == 0x2b && BOMBytes[1] == 0x2f && BOMBytes[2] == 0x76)
        return Encoding.UTF7;

      if (BOMBytes.Length < 4)
        return null;

      if (BOMBytes[0] == 0xff && BOMBytes[1] == 0xfe && BOMBytes[2] == 0 && BOMBytes[3] == 0)
        return Encoding.UTF32;

      if (BOMBytes[0] == 0 && BOMBytes[1] == 0 && BOMBytes[2] == 0xfe && BOMBytes[3] == 0xff)
        return Encoding.GetEncoding(12001);

      return null;
    }

    public static Encoding DetectUnicodeInByteSampleByHeuristics(byte[] SampleBytes)
    {
      long oddBinaryNullsInSample = 0;
      long evenBinaryNullsInSample = 0;
      long suspiciousUTF8SequenceCount = 0;
      long suspiciousUTF8BytesTotal = 0;
      long likelyUSASCIIBytesInSample = 0;

      //Cycle through, keeping count of binary null positions, possible UTF-8
      // sequences from upper ranges of Windows-1252, and probable US-ASCII
      // character counts.

      long currentPos = 0;
      int skipUTF8Bytes = 0;

      while (currentPos < SampleBytes.Length)
      {
        //binary null distribution
        if (SampleBytes[currentPos] == 0)
        {
          if (currentPos % 2 == 0)
            evenBinaryNullsInSample++;
          else
            oddBinaryNullsInSample++;
        }

        //likely US-ASCII characters
        if (IsCommonUSASCIIByte(SampleBytes[currentPos]))
          likelyUSASCIIBytesInSample++;

        //suspicious sequences (look like UTF-8)
        if (skipUTF8Bytes == 0)
        {
          int lengthFound = DetectSuspiciousUTF8SequenceLength(SampleBytes, currentPos);

          if (lengthFound > 0)
          {
            suspiciousUTF8SequenceCount++;
            suspiciousUTF8BytesTotal += lengthFound;
            skipUTF8Bytes = lengthFound - 1;
          }
        }
        else
        {
          skipUTF8Bytes--;
        }

        currentPos++;
      }

      //1: UTF-16 LE - in english / european environments, this is usually characterized by a
      // high proportion of odd binary nulls (starting at 0), with (as this is text) a low
      // proportion of even binary nulls.
      // The thresholds here used (less than 20% nulls where you expect non-nulls, and more than
      // 60% nulls where you do expect nulls) are completely arbitrary.

      if (((evenBinaryNullsInSample * 2.0) / SampleBytes.Length) < 0.2
        && ((oddBinaryNullsInSample * 2.0) / SampleBytes.Length) > 0.6
        )
        return Encoding.Unicode;

      //2: UTF-16 BE - in english / european environments, this is usually characterized by a
      // high proportion of even binary nulls (starting at 0), with (as this is text) a low
      // proportion of odd binary nulls.
      // The thresholds here used (less than 20% nulls where you expect non-nulls, and more than
      // 60% nulls where you do expect nulls) are completely arbitrary.

      if (((oddBinaryNullsInSample * 2.0) / SampleBytes.Length) < 0.2
        && ((evenBinaryNullsInSample * 2.0) / SampleBytes.Length) > 0.6
        )
        return Encoding.BigEndianUnicode;

      //3: UTF-8 - Martin Dürst outlines a method for detecting whether something CAN be UTF-8 content
      // using regexp, in his w3c.org unicode FAQ entry:
      // http://www.w3.org/International/questions/qa-forms-utf-8
      // adapted here for C#.
      string potentiallyMangledString = Encoding.ASCII.GetString(SampleBytes);
      Regex UTF8Validator = new Regex(@"\A("
        + @"[\x09\x0A\x0D\x20-\x7E]"
        + @"|[\xC2-\xDF][\x80-\xBF]"
        + @"|\xE0[\xA0-\xBF][\x80-\xBF]"
        + @"|[\xE1-\xEC\xEE\xEF][\x80-\xBF]{2}"
        + @"|\xED[\x80-\x9F][\x80-\xBF]"
        + @"|\xF0[\x90-\xBF][\x80-\xBF]{2}"
        + @"|[\xF1-\xF3][\x80-\xBF]{3}"
        + @"|\xF4[\x80-\x8F][\x80-\xBF]{2}"
        + @")*\z");
      if (UTF8Validator.IsMatch(potentiallyMangledString))
      {
        //Unfortunately, just the fact that it CAN be UTF-8 doesn't tell you much about probabilities.
        //If all the characters are in the 0-127 range, no harm done, most western charsets are same as UTF-8 in these ranges.
        //If some of the characters were in the upper range (western accented characters), however, they would likely be mangled to 2-byte by the UTF-8 encoding process.
        // So, we need to play stats.

        // The "Random" likelihood of any pair of randomly generated characters being one
        // of these "suspicious" character sequences is:
        // 128 / (256 * 256) = 0.2%.
        //
        // In western text data, that is SIGNIFICANTLY reduced - most text data stays in the <127
        // character range, so we assume that more than 1 in 500,000 of these character
        // sequences indicates UTF-8. The number 500,000 is completely arbitrary - so sue me.
        //
        // We can only assume these character sequences will be rare if we ALSO assume that this
        // IS in fact western text - in which case the bulk of the UTF-8 encoded data (that is
        // not already suspicious sequences) should be plain US-ASCII bytes. This, I
        // arbitrarily decided, should be 80% (a random distribution, eg binary data, would yield
        // approx 40%, so the chances of hitting this threshold by accident in random data are
        // VERY low).

        if ((suspiciousUTF8SequenceCount * 500000.0 / SampleBytes.Length >= 1) //suspicious sequences
          && (
              //all suspicious, so cannot evaluate proportion of US-Ascii
              SampleBytes.Length - suspiciousUTF8BytesTotal == 0
              ||
              likelyUSASCIIBytesInSample * 1.0 / (SampleBytes.Length - suspiciousUTF8BytesTotal) >= 0.8
            )
          )
          return Encoding.UTF8;
      }

      return null;
    }

    private static bool IsCommonUSASCIIByte(byte testByte)
    {
      if (testByte == 0x0A //lf
        || testByte == 0x0D //cr
        || testByte == 0x09 //tab
        || (testByte >= 0x20 && testByte <= 0x2F) //common punctuation
        || (testByte >= 0x30 && testByte <= 0x39) //digits
        || (testByte >= 0x3A && testByte <= 0x40) //common punctuation
        || (testByte >= 0x41 && testByte <= 0x5A) //capital letters
        || (testByte >= 0x5B && testByte <= 0x60) //common punctuation
        || (testByte >= 0x61 && testByte <= 0x7A) //lowercase letters
        || (testByte >= 0x7B && testByte <= 0x7E) //common punctuation
        )
        return true;
      else
        return false;
    }

    private static int DetectSuspiciousUTF8SequenceLength(byte[] SampleBytes, long currentPos)
    {
      int lengthFound = 0;

      if (SampleBytes.Length >= currentPos + 1
        && SampleBytes[currentPos] == 0xC2
        )
      {
        if (SampleBytes[currentPos + 1] == 0x81
          || SampleBytes[currentPos + 1] == 0x8D
          || SampleBytes[currentPos + 1] == 0x8F
          )
          lengthFound = 2;
        else if (SampleBytes[currentPos + 1] == 0x90
          || SampleBytes[currentPos + 1] == 0x9D
          )
          lengthFound = 2;
        else if (SampleBytes[currentPos + 1] >= 0xA0
          && SampleBytes[currentPos + 1] <= 0xBF
          )
          lengthFound = 2;
      }
      else if (SampleBytes.Length >= currentPos + 1
        && SampleBytes[currentPos] == 0xC3
        )
      {
        if (SampleBytes[currentPos + 1] >= 0x80
          && SampleBytes[currentPos + 1] <= 0xBF
          )
          lengthFound = 2;
      }
      else if (SampleBytes.Length >= currentPos + 1
        && SampleBytes[currentPos] == 0xC5
        )
      {
        if (SampleBytes[currentPos + 1] == 0x92
          || SampleBytes[currentPos + 1] == 0x93
          )
          lengthFound = 2;
        else if (SampleBytes[currentPos + 1] == 0xA0
          || SampleBytes[currentPos + 1] == 0xA1
          )
          lengthFound = 2;
        else if (SampleBytes[currentPos + 1] == 0xB8
          || SampleBytes[currentPos + 1] == 0xBD
          || SampleBytes[currentPos + 1] == 0xBE
          )
          lengthFound = 2;
      }
      else if (SampleBytes.Length >= currentPos + 1
        && SampleBytes[currentPos] == 0xC6
        )
      {
        if (SampleBytes[currentPos + 1] == 0x92)
          lengthFound = 2;
      }
      else if (SampleBytes.Length >= currentPos + 1
        && SampleBytes[currentPos] == 0xCB
        )
      {
        if (SampleBytes[currentPos + 1] == 0x86
          || SampleBytes[currentPos + 1] == 0x9C
          )
          lengthFound = 2;
      }
      else if (SampleBytes.Length >= currentPos + 2
        && SampleBytes[currentPos] == 0xE2
        )
      {
        if (SampleBytes[currentPos + 1] == 0x80)
        {
          if (SampleBytes[currentPos + 2] == 0x93
            || SampleBytes[currentPos + 2] == 0x94
            )
            lengthFound = 3;
          if (SampleBytes[currentPos + 2] == 0x98
            || SampleBytes[currentPos + 2] == 0x99
            || SampleBytes[currentPos + 2] == 0x9A
            )
            lengthFound = 3;
          if (SampleBytes[currentPos + 2] == 0x9C
            || SampleBytes[currentPos + 2] == 0x9D
            || SampleBytes[currentPos + 2] == 0x9E
            )
            lengthFound = 3;
          if (SampleBytes[currentPos + 2] == 0xA0
            || SampleBytes[currentPos + 2] == 0xA1
            || SampleBytes[currentPos + 2] == 0xA2
            )
            lengthFound = 3;
          if (SampleBytes[currentPos + 2] == 0xA6)
            lengthFound = 3;
          if (SampleBytes[currentPos + 2] == 0xB0)
            lengthFound = 3;
          if (SampleBytes[currentPos + 2] == 0xB9
            || SampleBytes[currentPos + 2] == 0xBA
            )
            lengthFound = 3;
        }
        else if (SampleBytes[currentPos + 1] == 0x82
          && SampleBytes[currentPos + 2] == 0xAC
          )
          lengthFound = 3;
        else if (SampleBytes[currentPos + 1] == 0x84
          && SampleBytes[currentPos + 2] == 0xA2
          )
          lengthFound = 3;
      }

      return lengthFound;
    }

  }
}

使用方法:

Encoding fileEncoding = TextFileEncodingDetector.DetectTextFileEncoding("you file path",Encoding.Default);

以上就是本文的全部内容,希望对大家学习C#程序设计有所帮助。

(0)

相关推荐

  • C#解码base64编码二进制数据的方法

    本文实例讲述了C#解码base64编码二进制数据的方法.分享给大家供大家参考.具体如下: 通过在Convert类的静态方法Convert.FromBase64String,可以讲base64编码的字符串解码为等效的byte []数组. using System; static class MyModClass { public static byte[] Base64DecodeString(this string inputStr) { byte[] decodedByteArray = Co

  • asp.C#实现图片文件与base64string编码解码

    图片当然是存在那个js文件里面,于是我就打开了flashblocker.js,然后浏览一下,找到下面一句: var flash = '......' (小白)<SPAN style="FONT-SIZE: small">这是我第一次认识到base64的用场,记得以前保存网页的时候,总习惯保存为.mht格式,因为这样会把网页中的图片也保存下来,但是一直奇怪为何

  • C#中字符串编码处理

    GB2312是简体中文系统的标准编码 用"区" 跟"位"的概念表示 称之为区位码 区指代大的范围 位相当于偏移量.每个汉字占两个字节高位字节"的范围是0xB0-0xF7,"低位字节"的范围是0xA1-0xFE.它的规律好像是按拼音a到z的顺序排列的"啊"字是GB2312之中的第一个汉字,它的区位码就是1601为此我们现在用代码的方式输出一个汉字c#下是little字节序 b0跑后面去了. 复制代码 代码如下: ush

  • C#实现获取文本文件的编码的一个类(区分GB2312和UTF8)

    以下是获取文件编码的一个类: using System; using System.IO; using System.Text; /// <summary> /// FileEncoding 的摘要说明 /// </summary> namespace FileEncoding { /// <summary> /// 获取文件的编码格式 /// </summary> public class EncodingType { /// <summary>

  • C# Base64编码函数

    一. Base64的编码规则        Base64编码的思想是是采用64个基本的ASCII码字符对数据进行重新编码.它将需要编码的数据拆分成字节数组.以3个字节为一组.按顺序排列24 位数据,再把这24位数据分成4组,即每组6位.再在每组的的最高位前补两个0凑足一个字节.这样就把一个3字节为一组的数据重新编码成了4个字节.当所要编码的数据的字节数不是3的整倍数,也就是说在分组时最后一组不够3个字节.这时在最后一组填充1到2个0字节.并在最后编码完成后在结尾添加1到2个 "=".

  • c#字符串编码编码(encoding)使用方法示例

    Unicode有四种编码格式,UTF-8, UTF-16,UTF-32,UTF-7. 字符编码类,ASCIIEncoding ,UTF7Encoding,UnicodeEncoding,UTF32Encoding. 复制代码 代码如下: using System.Collections.Generic;using System.Text; namespace AsciiEncodingDemo{    class Program    {        static void Main(stri

  • C#读写指定编码格式的文本文件

    在工作中经常读写文本文件,在读文件时,需要按开头的两个字节判断文件格式,然后按该格式读文件中的内容.  写文件时,也要按目标文件指定的格式来写入,只有这样才能让后续的环境正确读入. 1 查看格式     在vs2010开发环境打开某个文件,然后从菜单上, 文件--高级保存选项,就可看到当前文件的编码格式.   比如,xx.cs,xx.cshtml文件看到的是[简体中文(GB2312)-代码页936],就是GB2312.   xx.xml文件看到的是[Unicode(UTF-8带签名)-代码页65

  • c# Base64编码和图片的互相转换代码

    事出有因 我们已经做了一个编辑器,这个编辑器可以以xml格式存储一些信息.在存储图片信息时我们碰到了一些问题.我们本来在xml信息中存储的是图片的路径,然而一旦客户把这个信息copy到其他电脑上而没有同时copy相关的图片时,就会出现一些问题.          后来,我们把图片数据转换为Base64编码,替代了原先存储图片路径的方式. 转换流程 将图片转化为Base64字符串的流程是:首先使用BinaryFormatter将图片文件序列化为二进制数据,然后使用Convert类的ToBase64

  • C#如何自动识别文件的编码

    前言 C#中识别文件的编码是一个头疼的问题,最近在做导入微信商户后台退款数据时,无论怎么设置编码导出来都是乱码,后来在网上找了这个识别文件编码的代码,感觉不错.最后识别出来是gb2312,看来我还是太渣了,只能吃土了,竟然忘记了这个编码. 下面话不多说,上代码. /// <summary> /// 用于取得一个文本文件的编码方式(Encoding). /// </summary> public class TxtFileEncoder { public TxtFileEncoder

  • JS与C#编码解码

    escape不编码字符有69个:*,+,-,.,/,@,_,0-9,a-z,A-Z encodeURI不编码字符有82个:!,#,$,&,',(,),*,+,,,-,.,/,:,;,=,?,@,_,~,0-9,a-z,A-Z encodeURIComponent不编码字符有71个:!, ',(,),*,-,.,_,~,0-9,a-z,A-Z 1. JS: escape : js使用数据时可以使用escape    例如:搜藏中history纪录.    0-255以外的unicode值进行编码时

随机推荐