golang pprof 监控goroutine thread统计原理详解

目录
  • 引言
  • http 接口暴露的方式
    • goroutine profile 输出信息介绍
    • threadcreate 输出信息介绍
  • 程序代码暴露指标信息
  • 统计原理介绍
    • goroutine fetch 函数实现
    • threadcreate fetch 函数实现
  • 总结

引言

在之前 golang pprof监控 系列文章里我分别介绍了go trace以及go pprof工具对memory,block,mutex这些维度的统计原理,今天我们接着来介绍golang pprof工具对于goroutine 和thread的统计原理。

还记得在golang pprof监控系列 memory,block,mutex 使用 文章里,通过http接口的方式暴露的方式展现 指标信息那个网页图吗?

这一节,我将会介绍其中的goroutine部分和threadcreate部分。

老规矩,在介绍统计原理前,先来看看http接口暴露的方式暴露了哪些信息。

http 接口暴露的方式

让我们点击网页的goroutine 链接。。。

goroutine profile 输出信息介绍

进入到了一个这样的界面,我们挨个分析下网页展现出来的信息:

首先地址栏 /debug/pprof/goroutine?debug= 1 代表这是在访问goroutine指标信息,debug =1 代表访问的内容将会以文本可读的形式展现出来。 debug=0 则是会下载一个goroutine指标信息的二进制文件,这个文件可以通过go tool pprof 工具去进行分析,关于go tool pprof 的使用网上也有相当多的资料,这里就不展开了。 debug = 2 将会把当前所有协程的堆栈信息以文本可读形式展示在网页上。如下图所示:

debug =2 时的 如上图所示,41代表协程的id,方括号内running代表了协程的状态是运行中,接着就是该协程此时的堆栈信息了。

让我们再回到debug = 1的分析上面去,刚才分析完了地址栏里的debug参数,接着,我们看输出的第一行

goroutine profile: total 6
1 @ 0x102ad6c60 0x102acf7f4 0x102b04de0 0x102b6e850 0x102b6e8dc 0x102b6f79c 0x102c27d04 0x102c377c8 0x102d0fc74 0x102bea72c 0x102bebec0 0x102bebf4c 0x102ca4af0 0x102ca49dc 0x102d0b084 0x102d10f30 0x102d176a4 0x102b09fc4
#	0x102b04ddf	internal/poll.runtime_pollWait+0x5f		/Users/xiongchuanhong/goproject/src/go/src/runtime/netpoll.go:303
#	0x102b6e84f	internal/poll.(*pollDesc).wait+0x8f		/Users/xiongchuanhong/goproject/src/go/src/internal/poll/fd_poll_runtime.go:84

......

goroutine profile 表明了这个profile的类型。

total 6 代表此时一共有6个协程。

接着是下面一行,1 代表了在这个堆栈上,只有一个协程在执行。但其实在计算出数字1时,并不仅仅按堆栈去做区分,还依据了协程labels值,也就是 协程的堆栈和lebels标签值 共同构成了一个key,而数字1就是在遍历所有协程信息时,对相同key进行累加计数得来的。

我们可以通过下面的方式为协程设置labels。

	pprof.SetGoroutineLabels(pprof.WithLabels(context.Background(), pprof.Labels("name", "lanpangzi", "age", "18")))

通过上述代码,我可以为当前协程设置了两个标签值,分别是name和age,设置label值之后,再来看debug=1后的网页输出,可以发现 设置的labels出现了。

1 @ 0x104f86c60 0x104fb7358 0x105236368 0x104f867ec 0x104fba024
# labels: {"age":"18", "name":"lanpangzi"}
#	0x104fb7357	time.Sleep+0x137	/Users/xiongchuanhong/goproject/src/go/src/runtime/time.go:193
#	0x105236367	main.main+0x437		/Users/xiongchuanhong/goproject/src/go/main/main.go:46
#	0x104f867eb	runtime.main+0x25b	/Users/xiongchuanhong/goproject/src/go/src/runtime/proc.go:255

而数字1之后,就是协程正在执行的堆栈信息了。至此,goroutine指标的输出信息介绍完毕。

threadcreate 输出信息介绍

介绍完goroutine指标的输出信息后,再来看看threadcreate 线程创建指标的 输出信息。

老规矩,先看地址栏,debug=1代表 输出的是文本可读的信息,threadcreate 就没有debug=2的特别输出了,debug=0时 同样也会下载一个可供go tool pprof分析的二进制文件。

接着threadcreate pfofile表明了profile的类型, total 12 代表了此时总共有12个线程被创建,然后紧接着是11 代表了在这个总共有11个线程是在这个堆栈的代码段上被创建的,注意这里后面没有堆栈内容,说明runtime在创建线程时,并没有把此时的堆栈记录下来,原因有可能是 这个线程是runtime自己使用的,堆栈没有必要展示给用户,所以干脆不记录了,具体原因这里就不深入研究了。

下面输出的内容可以看到在main方法里面创建了一个线程,runtime.newm 方法内部,runtime会启动一个系统线程。

threadcreate 输出内容比较简单,没有过多可以讲的。

程序代码暴露指标信息

看完了http接口暴露着两类指标的方式,我们再来看看如何通过代码来暴露他们。 还记得在golang pprof监控系列memory,block,mutex 使用 是如何通过程序代码 暴露memory block mutex 指标的吗,goroutine 和 threadcreate 和他们一样,也是通过pprof.Lookup方法进行暴露的。

os.Remove("goroutine.out")
	f, _ := os.Create("goroutine.out")
	defer f.Close()
	err := pprof.Lookup("goroutine").WriteTo(f, 1)
	if err != nil {
		log.Fatal(err)
	}

	.... 

	os.Remove("threadcreate.out")
	f, _ := os.Create("threadcreate.out")
	defer f.Close()
	err := pprof.Lookup("threadcreate").WriteTo(f, 1)
	if err != nil {
		log.Fatal(err)
	}

无非就是将pprof.Lookup的传入的参数值改成对应的指标名即可。

接着我们来看看runtime内部是如何对这两种类型的指标进行统计的,好的,正戏开始。

统计原理介绍

无论是 goroutine 还是threadcreate 的指标信息的输出,都是调用了同一个方法writeRuntimeProfile。 golang 源码版本 go1.17.12。

// src/runtime/pprof/pprof.go:708
func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord, []unsafe.Pointer) (int, bool)) error {
	var p []runtime.StackRecord
	var labels []unsafe.Pointer
	n, ok := fetch(nil, nil)
	for {
		p = make([]runtime.StackRecord, n+10)
		labels = make([]unsafe.Pointer, n+10)
		n, ok = fetch(p, labels)
		if ok {
			p = p[0:n]
			break
		}
	}
	return printCountProfile(w, debug, name, &runtimeProfile{p, labels})
}

让我们来分析下这个函数,函数会传递一个fetch 方法,goroutine和threadcreate信息在输出时选择了不同的fetch方法来获取到各自的信息。

为了对主干代码有比较清晰的认识,先暂时不看fetch方法的具体实现,此时我们只需要知道,fetch方法可以将需要的指标信息 获取到,并且将信息的堆栈存到变量名为p的堆栈类型的切片里,然后将labels信息,存储到 变量名为labels的切片里。

注意: 只有goroutine类型的指标才有labels信息

获取到了堆栈信息,labels 信息,接着就是要将这些信息进行输出了,进行输出的函数是 上述源码里的最后一行 中 的printCountProfile 函数。

printCountProfile 函数的逻辑比较简单,我简单概括下,输出的时候会将 printCountProfile 参数中的堆栈信息连同labels构成的结构体 进行遍历, 堆栈信息和labels信息组合作为key,对相同key的内容进行累加计数。最后 printCountProfile 将根据debug的值的不同选择不同的输出方式,例如debug=0是二进制文件下载 方式 ,debug=1则是 网页文本可读方式进行输出

至此,对goroutine和threadcreate 指标信息的输出过程应该有了解了,即通过fetch方法获取到指标信息,然后通过printCountProfile 方法对指标信息进行输出。

fetch 方法的具体实现,我们还没有开始介绍,现在来看看,goroutine和threadcreate信息在输出时选择了不同的fetch方法来获取到各自的信息。

源码如下:

// src/runtime/pprof/pprof.go:661
func writeThreadCreate(w io.Writer, debug int) error {
	return writeRuntimeProfile(w, debug, "threadcreate", func(p []runtime.StackRecord, _ []unsafe.Pointer) (n int, ok bool) {
		return runtime.ThreadCreateProfile(p)
	})
}

// src/runtime/pprof/pprof.go:680
func writeGoroutine(w io.Writer, debug int) error {
	if debug >= 2 {
		return writeGoroutineStacks(w)
	}
	return writeRuntimeProfile(w, debug, "goroutine", runtime_goroutineProfileWithLabels)
}

goroutine 指标信息在输出时,会选择runtime_goroutineProfileWithLabels函数来获取goroutine指标,而threadcreate 则会调用 runtime.ThreadCreateProfile(p) 去获取threadcreate指标信息。

goroutine fetch 函数实现

runtime_goroutineProfileWithLabels 方法的实现是由go:linkname 标签链接过去的,实际底层实现的方法是 runtime_goroutineProfileWithLabels。

// src/runtime/mprof.go:744
//go:linkname runtime_goroutineProfileWithLabels runtime/pprof.runtime_goroutineProfileWithLabels
func runtime_goroutineProfileWithLabels(p []StackRecord, labels []unsafe.Pointer) (n int, ok bool) {
	return goroutineProfileWithLabels(p, labels)
}

goroutineProfileWithLabels 就是实际获取goroutine堆栈和标签的方法了。

我们往goroutineProfileWithLabels 传递了两个数组,分别用于存储堆栈信息,和labels信息,而goroutineProfileWithLabels 则负责将两个数组填充上对应的信息。

goroutineProfileWithLabels 的逻辑也比较容易,我这里仅仅简单概括下,其内部会通过一个全局变量allgptr 去遍历所有的协程,allgptr 保存了程序中所有的协程的地址, 而协程的结构体g内部,有一个叫做label的属性,这个值就代表协程的标签值,在遍历协程时,通过该属性便可以获取到标签值了。

threadcreate fetch 函数实现

runtime.ThreadCreateProfile 是 获取threadcreate 指标的方法。

源码如下:

func ThreadCreateProfile(p []StackRecord) (n int, ok bool) {
	first := (*m)(atomic.Loadp(unsafe.Pointer(&allm)))
	for mp := first; mp != nil; mp = mp.alllink {
		n++
	}
	if n <= len(p) {
		ok = true
		i := 0
		for mp := first; mp != nil; mp = mp.alllink {
			p[i].Stack0 = mp.createstack
			i++
		}
	}
	return
}

首先是获取到allm变量的地址,allm是一个全局变量,它其实是 存储所有m链表 的表头元素。

// src/runtime/runtime2.go:1092
var (
	allm       *m
	.....

在golang里,每创建一个m结构便会在底层创建一个系统线程,所以你可以简单的认为m就是代表了一个线程。可以之后深入了解下gpm模型。

for mp := first; mp != nil; mp = mp.alllink {
			p[i].Stack0 = mp.createstack
			i++
		}

然后 ThreadCreateProfile 里 这段逻辑就是遍历了整个m链表,将m结构体保存的堆栈信息赋值给 参数p,p则是我们需要填充的堆栈信息数组,在m结构体里,alllink是一个指向链表下一个元素的指针,每次新创建m时,会将新m插入到表头位置,然后更新allm变量。

总结

至此,goroutine 和threadcreate的使用和原理都介绍完了,他们比起之前的memory,block之类的统计相对来说比较简单,简而言之就是遍历一个全局变量allgptr或者allm ,遍历时获取到协程或者线程的堆栈信息和labels信息,然后将这些信息进行输出即可。

以上就是golang pprof 监控goroutine thread统计原理详解的详细内容,更多关于go pprof goroutine thread统计的资料请关注我们其它相关文章!

(0)

相关推荐

  • Golang 使用os 库的 ReadFile() 读文件最佳实践

    目录 前言 1. 读取整个文件到内存中 2. 读取特定字节数据到内存中 3. 按行读取文件到内存中 前言 在 Go 中,os 库的 ReadFile() 方法经常用作读文件,相比其他这个方法很方便,无需关心 close 文件等一些工作. 下面列出三种常见的读文件场景: 1. 读取整个文件到内存中 使用 os 库的 ReadFile() 可以把整个文件读到内存中,在日常开发中,这是读文件使用频率最多的方法,也是最基本一个函数.下面代码展示了如何使用这个函数. package main import

  • Golang 探索对Goroutine的控制方法(详解)

    前言 在golang中,只需要在函数调用前加上关键字go即可创建一个并发任务单元,而这个新建的任务会被放入队列中,等待调度器安排.相比系统的MB级别线程栈,goroutine的自定义栈只有2KB,这使得我们能够轻易创建上万个并发任务,如此对性能提升不少.但随之而来的有以下几个问题: 如何等待所有goroutine的退出 如何限制创建goroutine的数量(信号量实现) 怎么让goroutine主动退出 探索--如何从外部杀死goroutine 本文记录了笔者就以上几个问题进行探究的过程,文中给

  • Golang pprof监控之cpu占用率统计原理详解

    目录 http 接口暴露的方式 程序代码生成profile cpu 统计原理分析 线程处理信号的时机 内核发送信号的方式 采样数据的公平性 总结 经过前面的几节对pprof的介绍,对pprof统计的原理算是掌握了七八十了,我们对memory,block,mutex,trace,goroutine,threadcreate这些维度的统计原理都进行了分析,但唯独还没有分析pprof 工具是如何统计cpu使用情况的,今天我们来分析下这部分. http 接口暴露的方式 还记得 golang pprof监

  • golang pprof 监控系列 go trace统计原理与使用解析

    目录 引言 go trace 使用 统计原理介绍 Goroutine analysis Execution Network wait Sync block,Blocking syscall,Scheduler wait 各种profile 图 引言 服务监控系列文章 服务监控系列视频 关于go tool trace的使用,网上有相当多的资料,但拿我之前初学golang的经验来讲,很多资料都没有把go tool trace中的相关指标究竟是统计的哪些方法,统计了哪段区间讲解清楚.所以这篇文章不仅仅

  • Golang 标准库 tips之waitgroup详解

    WaitGroup 用于线程同步,很多场景下为了提高并发需要开多个协程执行,但是又需要等待多个协程的结果都返回的情况下才进行后续逻辑处理,这种情况下可以通过 WaitGroup 提供的方法阻塞主线程的执行,直到所有的 goroutine 执行完成. 本文目录结构: WaitGroup 不能被值拷贝 Add 需要在 Wait 之前调用 使用 channel 实现 WaitGroup 的功能 Add 和 Done 数量问题 WaitGroup 和 channel 控制并发数 WaitGroup 和

  • GoLang channel关闭状态相关操作详解

    关于 channel 的使用,有几点不方便的地方: 1.在不改变 channel 自身状态的情况下,无法获知一个 channel 是否关闭. 2.关闭一个 closed channel 会导致 panic.所以,如果关闭 channel 的一方在不知道 channel 是否处于关闭状态时就去贸然关闭 channel 是很危险的事情. 3.向一个 closed channel 发送数据会导致 panic.所以,如果向 channel 发送数据的一方不知道 channel 是否处于关闭状态时就去贸然

  • golang pprof监控memory block mutex使用指南

    目录 profile trace 网页显示 如何使用 http 接口暴露的方式 allocs ,heap block mutex 代码生成profile文件的方式 总结 profile profile的中文被翻译轮廓,对于计算机程序而言,抛开业务逻辑不谈,它的轮廓是是啥呢?不就是cpu,内存,各种阻塞开销,线程,协程概况 这些运行指标或环境.golang语言自带了工具库来帮助我们描述,探测,分析这些指标或者环境信息,让我们来学习它. 在上一篇golang pprof 监控系列(1) —— go

  • 关于angular js_$watch监控属性和对象详解

    $Watch:(监听一个model,当一个model每次改变时,都会触发第二个函数) $watch('watchFn',watchAction,deepWatch) watchFn:带有Angular 表达式或者函数的字符串,它会返回被监控的数据模型的当前值. watchAction: 一个函数function(newValue,oldValue){},当watchFn 发生变化时会被调用 deepWatch:默认为false,监听数组的某个元素或者对象的属性时设置为true; 监控一个属性:

  • python golang中grpc 使用示例代码详解

    python 1.使用前准备,安装这三个库 pip install grpcio pip install protobuf pip install grpcio_tools 2.建立一个proto文件hello.proto // [python quickstart](https://grpc.io/docs/quickstart/python.html#run-a-grpc-application) // python -m grpc_tools.protoc --python_out=. -

  • 基于gin的golang web开发:路由示例详解

    Gin是一个用Golang编写的HTTP网络框架.它的特点是类似于Martini的API,性能更好.在golang web开发领域是一个非常热门的web框架. 启动一个Gin web服务器 使用下面的命令安装Gin go get -u github.com/gin-gonic/gin 在代码里添加依赖 import "github.com/gin-gonic/gin" 快速启动一个Gin服务器的代码如下 package main import "github.com/gin-

  • golang类型转换组件Cast的使用详解

    开源地址 https://github.com/spf13/cast Cast是什么? Cast是一个库,以一致和简单的方式在不同的go类型之间转换. Cast提供了简单的函数,可以轻松地将数字转换为字符串,将接口转换为bool类型等等.当一个明显的转换是可能的时,Cast会智能地执行这一操作.它不会试图猜测你的意思,例如,你只能将一个字符串转换为int的字符串表示形式,例如"8".Cast是为Hugo开发的,Hugo是一个使用YAML.TOML或JSON作为元数据的网站引擎. 为什么

随机推荐