Python多线程与同步机制浅析

目录
  • 线程实现
    • Thread类
    • 函数方式
    • 继承方式
  • 同步机制
    • 同步锁Lock
    • 条件变量Condition
    • 信号量Semaphore
    • 事件Event
    • 屏障Barrier
  • GIL全局解释器锁

线程实现

Python中线程有两种方式:函数或者用类来包装线程对象。threading模块中包含了丰富的多线程支持功能:

  • threading.currentThread(): 返回当前线程;
  • threading.enumerate(): 返回包含正在运行的线程列表;
  • threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())等价。

Thread类

通过Thread类来处理线程,类中提供的一些方法:

  • run(): 用以表示线程执行的方法(可重载实现实际功能);
  • start(): 启动线程;
  • join([time]): 等待线程中止(或者超时);
  • isAlive(): 返回线程是否活动;
  • getName(): 返回线程名;
  • setName(): 设置线程名;
  • setDaemon(True):设置为后台进程(必须在start调用前设定)。

函数方式

通过Thread直接构造线程,然后通过start方法启动线程:

threading.Thread(group=None, target=None, name=None, args=(), kwargs=None, *,daemon=None)

各参数说明:

  • group:指定线程隶属的线程组(当前忽略);
  • target:指定线程要调度的目标方法(即实现功能的函数);
  • args:传递给目标方法的参数(以元组的方式);
  • kwargs:传递给目标方法的参数(以字典的方式);
  • daemon:指定线程是否为后台线程。
def simpleRoutine(name, delay):
    print(f"routine {name} starting...")
    time.sleep(delay)
    print(f"routine {name} finished")
if __name__ == '__main__':
    thrOne = threading.Thread(target=simpleRoutine, args=("First", 1))
    thrTwo = threading.Thread(target=simpleRoutine, args=("Two", 2))
    thrOne.start()
    thrTwo.start()
    thrOne.join()
    thrTwo.join()

继承方式

直接继承Thread,创建一个新的子类(主要实现run方法):

class SimpleThread (threading.Thread):
    def __init__(self, name, delay):
        # threading.Thread.__init__(self)
        super().__init__()
        self.name = name
        self.delay = delay
    def run(self):
        print(f"thread {self.name} starting...")
        time.sleep(self.delay)
        print(f"thread {self.name} finished")
if __name__ == '__main__':
    thrOne = SimpleThread("First", 2)
    thrTwo = SimpleThread("Second", 2)
    thrOne.start()
    thrTwo.start()
    thrOne.join()
    thrTwo.join()

同步机制

当多个线程同时修改同一条数据时可能会出现脏数据;所以,就需要线程锁,即同一时刻只允许一个线程执行操作。

同步锁Lock

threading提供了Lock和RLock(可重入锁)两个类,它们都提供了如下两个方法来加锁和释放锁:

  • acquire(blocking=True, timeout=-1):加锁,其中 timeout 参数指定加锁多少秒。
  • release():释放锁。

两种使用锁的方式:

gCount = 0
def PlusOne(locker):
    global gCount
      with locker:
          gCount += 1、
def MinusOne(locker):
    global gCount
      if locker.acquire():
          gCount -= 1
          locker.release()

条件变量Condition

Condition对象内部维护了一个锁(构造时可传递一个Lock/RLock对象,否则内部会自行创建一个RLock)和一个waiting池:

  • 通过acquire获得Condition对象;
  • 当调用wait方法时,线程会释放Condition内部的锁并进入blocked状态,同时在waiting池中记录这个线程;
  • 当调用notify方法时,Condition对象会从waiting池中挑选一个线程,通知其调用acquire方法尝试取到锁。

Condition对象:

__init__(self,lock=None):Condition类总是与一个锁相关联(若不指定lock参数,会自动创建一个与之绑定的RLock对象);

acquire(timeout):调用关联锁的acquire()方法;

release():调用关联锁的release()方法

wait(timeout):线程挂起,直到收到一个notify通知或超时才会被唤醒;必须在已获得锁的前提下调用;

notify(n=1):唤醒waiting池中的n个正在等待的线程并通知它:

  • 收到通知的线程将自动调用acquire()方法尝试加锁;
  • 若waiting池中有多个线程,随机选择n个唤醒;
  • 必须在已获得锁的前提下调用,否则将引发错误。

notify_all():通知所有线程。

class Producer(threading.Thread):
    def __init__(self, cond, storage):
        threading.Thread.__init__(self)
        self.cond = cond
        self.storage = storage
    def run(self):
        label = 1
        while True:
            with self.cond:
                if len(self.storage) < 10:
                    self.storage.append(label)
                    print(f"<- Produce {label} product")
                    label += 1
                    self.cond.notify(2)
                else:
                    print(f"<- storage full: Has Produced {label - 1} product")
                    self.cond.notify_all()
                    self.cond.wait()
                time.sleep(0.4)
class Consumer(threading.Thread):
    def __init__(self, name, cond, storage):
        threading.Thread.__init__(self)
        self.name = name
        self.cond = cond
        self.storage = storage
    def run(self):
        while True:
            if self.cond.acquire():
                if len(self.storage) > 1:
                    pro = self.storage.pop(0)
                    print(f"-> {self.name} consumed {pro}")
                    self.cond.notify()
                else:
                    print(f"-> {self.name} storage empty: no product to consume")
                    self.cond.wait()
                self.cond.release()
                time.sleep(1)

信号量Semaphore

信号量对象内部维护一个计数器:

  • acquire(blocking=True,timeout=None)时减1,当计数为0就阻塞请求的线程;
  • release()时加1,当计数大于0恢复被阻塞的线程;

threading中有Semaphore和BoundedSemaphore两个信号量;BoundedSemaphore限制了release的次数,任何时候计数器的值,都不不能大于初始值(release时会检测计数器的值,若大于等于初始值,则抛出ValueError异常)。

通过Semaphore维护生产(release一个)、消费(acquire一个)量:

# products = threading.Semaphore(0)
def produceOne(label, sem: threading.Semaphore):
    sem.release()
    print(f"{label} produce one")
def consumeOne(label, sem: threading.Semaphore):
    sem.acquire()
    print(f"{label} consume one")

通过BoundedSemaphore来控制并发数量(最多有Semaphore初始值数量的线程并发):

# runner = threading.BoundedSemaphore(3)
def runBound(name, sem: threading.BoundedSemaphore):
    with sem:
        print(f"{name} is running")
        time.sleep(1)
        print(f"{name} finished")

事件Event

事件对象内部有个标志字段,用于线程等待事件的发生:

  • isSet():返回event的状态值;
  • wait():状态为False时,一直阻塞;否则立即返回;
  • set(): 设置状态值为True,激活所有被阻塞的线程;
  • clear():恢复状态值为False。

多线程等待事件发生,然后开始执行:

def waiters(name, evt: threading.Event):
    evt.wait()
    print(f"{name} is running")
    time.sleep(1)
    print(f"{name} finished")
def starting(evt: threading.Event):
    evt.set()
    print("event is set")

屏障Barrier

屏障用于设定等待线程数量,当数量达到指定值时,开始执行:

threading.Barrier(parties, action=None, timeout=None)

屏障属性与方法:

  • wait(timeout=None):等待通过屏障;线程被阻塞,直到阻塞的数量达到parties时,被阻塞的线程被同时全部释放;
  • reset():重置屏障到默认的空状态;
  • abort():将障碍置为断开状态;导致等待的线程引发BrokenBarrierError异常;
  • partier():通过障碍所需的线程数;
  • n_waiting():当前在屏障中等待的线程数;
  • broken():如果屏障处于断开状态,则返回True。
def waitBarrier(name, barr: threading.Barrier):
    print(f"{name} waiting for open")
    try:
        barr.wait()
        print(f"{name} running")
        time.sleep(5)
    except threading.BrokenBarrierError:
        print(f"{name} exception")
    print(f"{name} finished")

GIL全局解释器锁

GIL(Global Interpreter Lock,全局解释器锁);cpython中,某个线程想要执行,必须先拿到GIL(可以把GIL看作是“通行证”)。每次释放GIL锁,线程都要进行锁竞争,切换线程,会消耗资源。

由于GIL锁的存在,python里一个进程永远只能同时执行一个线程(拿到GIL的线程),这就是为什么在多核CPU上,python的多线程效率并不高:

  • CPU密集型代码:由于计算工作多,会很快用完时间片,然后触发GIL的释放与再竞争;
  • IO密集型代码(文件处理、网络爬虫等):多线程能够有效提升效率(单线程下有IO操作会进行IO等待,造成不必要的时间浪费,而开启多线程能在线程A等待时,自动切换到线程B,可以不浪费CPU的资源,从而能提升程序执行效率)。

python在使用多线程的时候,调用的是c语言的原生线程:

  • 拿到公共数据
  • 申请GIL
  • python解释器调用os原生线程
  • os操作cpu执行运算
  • 当线程执行时间到后,就进行切换(context switch)

到此这篇关于Python多线程与同步机制浅析的文章就介绍到这了,更多相关Python多线程内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python多线程同步之文件读写控制

    本文实例为大家分享了python多线程同步之文件读写控制的具体代码,供大家参考,具体内容如下 1.实现文件读写的文件ltz_schedule_times.py #! /usr/bin/env python #coding=utf-8 import os def ReadTimes(): res = [] if os.path.exists('schedule_times.txt'): fp = open('schedule_times.txt', 'r') else: os.system('to

  • python多线程同步实例教程

    前言 进程之间通信与线程同步是一个历久弥新的话题,对编程稍有了解应该都知道,但是细说又说不清.一方面除了工作中可能用的比较少,另一方面就是这些概念牵涉到的东西比较多,而且相对较深.网络编程,服务端编程,并发应用等都会涉及到.其开发和调试过程都不直观.由于同步通信机制的原理都是想通的,本文希通过望借助python实例来将抽象概念具体化. 阅读之前可以参考之前的一篇文章:python多线程与多进程及其区别,了解一下线程和进程的创建. python多线程同步 python中提供两个标准库thread和

  • Python多线程实现同步的四种方式

    临界资源即那些一次只能被一个线程访问的资源,典型例子就是打印机,它一次只能被一个程序用来执行打印功能,因为不能多个线程同时操作,而访问这部分资源的代码通常称之为临界区. 锁机制 threading的Lock类,用该类的acquire函数进行加锁,用realease函数进行解锁 import threading import time class Num: def __init__(self): self.num = 0 self.lock = threading.Lock() def add(s

  • python多线程同步售票系统

    目录 1.分析过程 2.准备过程 3.实现过程 解决问题场景:假如剩余1000张电影票需要售卖,同时有10家电影App来售卖这1000张电影票.主要的逻辑实现过程是什么,要求使用python技术栈进行解题? 1.分析过程 分析:主要信息点是10家App平台同时售卖1000张电影票.此时,可以使用10个python线程来作为10家App平台,同时售卖必须保证电影票数量的同步,比如A平台卖出了一张票那总共剩余的票数是999,B平台若要再卖出一张票则应该是999-1=998张票. 技术栈分析:pyth

  • Python实现的多线程同步与互斥锁功能示例

    本文实例讲述了Python实现的多线程同步与互斥锁功能.分享给大家供大家参考,具体如下: #! /usr/bin/env python #coding=utf-8 import threading import time ''' #1.不加锁 num = 0 class MyThread(threading.Thread): def run(self): global num time.sleep(1) #一定要sleep!!! num = num + 1 msg = self.name + '

  • Python多线程与同步机制浅析

    目录 线程实现 Thread类 函数方式 继承方式 同步机制 同步锁Lock 条件变量Condition 信号量Semaphore 事件Event 屏障Barrier GIL全局解释器锁 线程实现 Python中线程有两种方式:函数或者用类来包装线程对象.threading模块中包含了丰富的多线程支持功能: threading.currentThread(): 返回当前线程: threading.enumerate(): 返回包含正在运行的线程列表: threading.activeCount(

  • Python线程之同步机制实际应用场景举例说明

    目录 一.举例银行转账 二.问题解决 三.总结 这次让我们来看看一个真实场景吧:银行转账 一.举例银行转账 假设现在有一个xuewei的账号里面有 100W. 然后有多个任务在转账,转入转出都是跟这个xuewei账号相关的. 而且这些任务发生是随机的. 我们先把上面的场景写成代码: xuewei_account = 100 # amount为负数即是转出金额 def transfer(money):     global xuewei_account     xuewei_account +=

  • Python多进程并发与同步机制超详细讲解

    目录 多进程 僵尸进程 Process类 函数方式 继承方式 同步机制 状态管理Managers 在<多线程与同步>中介绍了多线程及存在的问题,而通过使用多进程而非线程可有效地绕过全局解释器锁. 因此,通过multiprocessing模块可充分地利用多核CPU的资源. 多进程 多进程是通过multiprocessing包来实现的,multiprocessing.Process对象(和多线程的threading.Thread类似)用来创建一个进程对象: 在类UNIX平台上,需要对每个Proce

  • Python多线程同步Lock、RLock、Semaphore、Event实例

    一.多线程同步 由于CPython的python解释器在单线程模式下执行,所以导致python的多线程在很多的时候并不能很好地发挥多核cpu的资源.大部分情况都推荐使用多进程. python的多线程的同步与其他语言基本相同,主要包含: Lock & RLock :用来确保多线程多共享资源的访问. Semaphore : 用来确保一定资源多线程访问时的上限,例如资源池.  Event : 是最简单的线程间通信的方式,一个线程可以发送信号,其他的线程接收到信号后执行操作. 二.实例 1)Lock &a

  • 详解python多线程、锁、event事件机制的简单使用

    线程和进程 1.线程共享创建它的进程的地址空间,进程有自己的地址空间 2.线程可以访问进程所有的数据,线程可以相互访问 3.线程之间的数据是独立的 4.子进程复制线程的数据 5.子进程启动后是独立的 ,父进程只能杀掉子进程,而不能进行数据交换 6.修改线程中的数据,都是会影响其他的线程,而对于进程的更改,不会影响子进程 threading.Thread Thread 是threading模块中最重要的类之一,可以使用它来创建线程.有两种方式来创建线程:一种是通过继承Thread类,重写它的run

  • Python多线程同步---文件读写控制方法

    1.实现文件读写的文件ltz_schedule_times.py #! /usr/bin/env python #coding=utf-8 import os def ReadTimes(): res = [] if os.path.exists('schedule_times.txt'): fp = open('schedule_times.txt', 'r') else: os.system('touch schedule_times.txt') fp = open('schedule_ti

  • 详解python多线程之间的同步(一)

    引言: 线程之间经常需要协同工作,通过某种技术,让一个线程访问某些数据时,其它线程不能访问这些数据,直到该线程完成对数据的操作.这些技术包括临界区(Critical Section),互斥量(Mutex),信号量(Semaphore),事件Event等. Event threading库中的event对象通过使用内部一个flag标记,通过flag的True或者False的变化来进行操作.      名称                                      含义 set( )

随机推荐