Redis常见限流算法原理及实现

目录
  • 前言
  • 简介
  • 固定时间窗口
    • 原理
    • 示例说明
    • 优缺点
    • 相关实现
      • 限流脚本
      • 具体实现
      • 测试
  • 滑动时间窗口
    • 实现原理
    • 示例说明
    • 具体实现
  • 漏桶算法
    • 原理
    • 具体实现
  • 令牌桶算法
    • 原理
    • 具体实现
    • 小结
  • 总结

前言

在高并发系统中,我们通常需要通过各种手段来提供系统的可以用性,例如缓存、降级和限流等,本文将针对应用中常用的限流算法进行详细的讲解。

简介

限流简称流量限速(Rate Limit)是指只允许指定的事件进入系统,超过的部分将被拒绝服务、排队或等待、降级等处理.

常见的限流方案如下:

固定时间窗口

固定时间窗口是最常见的限流算法之一。其中窗口的概念,对应限流场景当中的限流时间单元。

原理

  • 时间线划分为多个独立且固定大小窗口;
  • 落在每一个时间窗口内的请求就将计数器加1;
  • 如果计数器超过了限流阈值,则后续落在该窗口的请求都会被拒绝。但时间达到下一个时间窗口时,计数器会被重置为0。

示例说明

说明:如上图场景是每秒钟限流10次,窗口的大小为1秒,每个方块代表一个请求,绿色的方块代表正常的请求,红色的方法代表被限流的请求,在每秒10次的场景中,从左往右当来看,当进入10个请求后,后面的请求都被会被限流。

优缺点

优点:

  • 逻辑简单、维护成本比较低;

缺点:

窗口切换时无法保证限流值。

相关实现

固定时间窗口的具体实现,可以采用Redis调用lua限流脚本来实现。

限流脚本

local key = KEYS[1]
local count = tonumber(ARGV[1])
local time = tonumber(ARGV[2])
local current = redis.call('get', key)
if current and tonumber(current) > count then
    return tonumber(current)
end
current = redis.call('incr', key)
if tonumber(current) == 1 then
    redis.call('expire', key, time)
end
return tonumber(current)

具体实现

   public Long ratelimiter(String key ,int time,int count) throws IOException
   {
       Resource resource = new ClassPathResource("ratelimiter.lua");
       String redisScript = IOUtils.toString(resource.getInputStream(), StandardCharsets.UTF_8);
       List<String> keys = Collections.singletonList(key);
       List<String> args = new ArrayList<>();
       args.add(Integer.toString(count));
       args.add(Integer.toString(time));

       long result = redisTemplate.execute(new RedisCallback<Long>() {
           @Override
           public Long doInRedis(RedisConnection connection) throws DataAccessException {
               Object nativeConnection = connection.getNativeConnection();
               if (nativeConnection instanceof Jedis)
               {
                   return (Long) ((Jedis) nativeConnection).eval(redisScript, keys, args);
               }
               return -1l;
           }
       });
       return result;
   }

测试

 @RequestMapping(value = "/RateLimiter", method = RequestMethod.GET)
    public String RateLimiter() throws IOException
    {
         int time=3;
         int count=1;
         String key="redis:ratelimiter";
         Long number=redisLockUtil.ratelimiter(key, time, count);
         logger.info("count:{}",number);
         Map<String, Object> map =new HashMap<>();
         if(number==null || number.intValue()>count)
         {
             map.put("code", "-1");
             map.put("msg", "访问过于频繁,请稍候再试");
         }else{
             map.put("code", "200");
             map.put("msg", "访问成功");
         }
         return JSON.toJSONString(map);
    }

说明:测试为3秒钟访问1次,超过了次数会提示错误。

滑动时间窗口

滑动时间窗口算法是对固定时间窗口算法的一种改进,在滑动窗口的算法中,同样需要针对当前的请求来动态查询窗口。但窗口中的每一个元素,都是子窗口。子窗口的概念类似于方案一中的固定窗口,子窗口的大小是可以动态调整的。

实现原理

  • 将单位时间划分为多个区间,一般都是均分为多个小的时间段;
  • 每一个区间内都有一个计数器,有一个请求落在该区间内,则该区间内的计数器就会加一;
  • 每过一个时间段,时间窗口就会往右滑动一格,抛弃最老的一个区间,并纳入新的一个区间;
  • 计算整个时间窗口内的请求总数时会累加所有的时间片段内的计数器,计数总和超过了限制数量,则本窗口内所有的请求都被丢弃。

示例说明

说明:比如上图中的场景是每分钟限流100次。每一个子窗口的时间维度设置为1秒,那么一分钟的窗口有60个子窗口。这样每当一个请求来了之后,我们去动态计算这个窗口的时候,我们最多需找60次。时间复杂度,从线性变成常量级了,时间的复杂度相对来说也会更低了。

具体实现

关于滑动时间窗的实现,可以采用sentinel,关于sentinel的使用后续将详细进行讲解。

漏桶算法

漏桶算法是水先进入到漏桶里,漏桶再以一定的速率出水,当流入水的数量大于流出水时,多余的水直接溢出。把水换成请求来看,漏桶相当于服务器队列,但请求量大于限流阈值时,多出来的请求就会被拒绝服务。漏桶算法使用队列实现,可以以固定的速率控制流量的访问速度,可以做到流量的平整化处理。

原理

说明:

  • 将每个请求放入固定大小的队列进行中
  • 队列以固定速率向外流出请求,如果队列为空则停止流出。
  • 如队列满了则多余的请求会被直接拒绝

具体实现

long timeStamp = System.currentTimeMillis(); //当前时间
    long  capacity = 1000;// 桶的容量
    long  rate = 1;//水漏出的速度
    long  water = 100;//当前水量
    public boolean leakyBucket()
    {
        //先执行漏水,因为rate是固定的,所以可以认为“时间间隔*rate”即为漏出的水量
        long  now = System.currentTimeMillis();
        water = Math.max(0, water -(now-timeStamp) * rate);
        timeStamp = now;
        // 水还未满,加水
        if (water < capacity)
        {
            water=water+100;
            return true;
        }
        //水满,拒绝加水
        else
        {
          return false;
        }
    }
    @RequestMapping(value="/leakyBucketLimit",method = RequestMethod.GET)
    public void leakyBucketLimit()
    {
        for(int i=0;i<20;i++) {
            fixedThreadPool.execute(new Runnable()
            {
                @Override
                public void run()
                {
                    if(leakyBucket())
                    {
                        logger.info("thread name:"+Thread.currentThread().getName()+" "+sdf.format(new Date()));
                    }
                    else
                    {
                       logger.error("请求频繁");
                    }
                }
            });
        }
    }

令牌桶算法

令牌桶算法是基于漏桶之上的一种改进版本,在令牌桶中,令牌代表当前系统允许的请求上限,令牌会匀速被放入桶中。当桶满了之后,新的令牌就会被丢弃

原理

  • 令牌以固定速率生成并放入到令牌桶中;
  • 如果令牌桶满了则多余的令牌会直接丢弃,当请求到达时,会尝试从令牌桶中取令牌,取到了令牌的请求可以执行;
  • 如果桶空了,则拒绝该请求。

具体实现

@RequestMapping(value="/ratelimit",method = RequestMethod.GET)
    public void ratelimit()
    {
        //每1s产生0.5个令牌,也就是说接口2s只允许调用1次
        RateLimiter rateLimiter=RateLimiter.create(0.5,1,TimeUnit.SECONDS);

        for(int i=0;i<10;i++) {
            fixedThreadPool.execute(new Runnable()
            {
                @Override
                public void run()
                {
                    //获取令牌最大等待10秒
                    if(rateLimiter.tryAcquire(1,10,TimeUnit.SECONDS))
                    {
                        logger.info("thread name:"+Thread.currentThread().getName()+" "+sdf.format(new Date()));
                    }
                    else
                    {
                       logger.error("请求频繁");
                    }
                }
            });
        }
    }

执行结果:

-[pool-1-thread-3] ERROR 请求频繁
[pool-1-thread-2] ERROR  请求频繁
[pool-1-thread-1] INFO   thread name:pool-1-thread-1 2022-08-07 15:44:00
[pool-1-thread-8] ERROR []  - 请求频繁
[pool-1-thread-9] ERROR []  - 请求频繁
[pool-1-thread-10] ERROR [] - 请求频繁
[pool-1-thread-7] INFO  []  - thread name:pool-1-thread-7 2022-08-07 15:44:03
 [pool-1-thread-6] INFO  [] - thread name:pool-1-thread-6 2022-08-07 15:44:05
[pool-1-thread-5] INFO  []  - thread name:pool-1-thread-5 2022-08-07 15:44:07
[pool-1-thread-4] INFO  []  - thread name:pool-1-thread-4 2022-08-07 15:44:09

说明:接口限制为每2秒请求一次,10个线程需要20s才能处理完,但是rateLimiter.tryAcquire限制了10s内没有获取到令牌就抛出异常,所以结果中会有5个是请求频繁的。

小结

  • 固定窗口:实现简单,适用于流量相对均匀分布,对限流准确度要求不严格的场景。
  • 滑动窗口:适用于对准确性和性能有一定的要求场景,可以调整子窗口数量来权衡性能和准确度
  • 漏桶:适用于流量绝对平滑的场景
  • 令牌桶:适用于流量整体平滑的情况下,同时也可以满足一定的突发流程场景

总结

到此这篇关于Redis常见限流算法原理及实现的文章就介绍到这了,更多相关Redis限流算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • redis zset实现滑动窗口限流的代码

    目录 限流 rediszset特性 滑动窗口算法 java代码实现 补充:RediszSet实现滑动窗口对短信进行防刷限流 前言 示例代码 限流 需求背景:同一用户1分钟内登录失败次数超过3次,页面添加验证码登录验证,也即是限流的思想. 常见的限流算法:固定窗口计数器:滑动窗口计数器:漏桶:令牌桶.本篇选择的滑动窗口计数器 redis zset特性 Redis 有序集合(sorted set)和集合(set)一样也是 string 类型元素的集合,且不允许重复的成员.不同的是每个元素都会关联一个

  • 使用SpringBoot + Redis 实现接口限流的方式

    目录 配置 限流注解 定制 RedisTemplate Lua 脚本 注解解析 接口测试 全局异常处理 Redis 除了做缓存,还能干很多很多事情:分布式锁.限流.处理请求接口幂等性...太多太多了 配置 首先我们创建一个 Spring Boot 工程,引入 Web 和 Redis 依赖,同时考虑到接口限流一般是通过注解来标记,而注解是通过 AOP 来解析的,所以我们还需要加上 AOP 的依赖,最终的依赖如下: <dependency> <groupId>org.springfra

  • 使用Java实现Redis限流的方法

    1.概述   限流的含义是在单位时间内确保发往某个模块的请求数量小于某个数值,比如在实现秒杀功能时,需要确保在10秒内发往支付模块的请求数量小于500个.限流的作用是防止某个段时间段内的请求数过多,造成模块因高并发而不可用. 2.zset有序集合相关命令与限流   zset也叫有序集合,是Redis的一种数据类型,在其中每个值(value)都会有一个对应的score参数,以此来描述该值的权重分值.可以通过如下形式的命令向zset有序集合里添加元素: zadd key score value   

  • redis lua限流算法实现示例

    目录 限流算法 计数器算法 场景分析 算法实现 漏铜算法 令牌桶算法: 算法实现 限流算法 常见的限流算法 计数器算法 漏桶算法 令牌桶算法 计数器算法   顾名思义,计数器算法是指在一定的时间窗口内允许的固定数量的请求.比如,2s内允许10个请求,30s内允许100个请求等等.如果设置的时间粒度越细,那么相对而言限流就会越平滑,控制的粒度就会更细. 场景分析 试想,如果设置的粒度比较粗会出现什么样的问题呢?如下图设置一个 1000/3s 的限流计数统计. 图中的限流策略为3s内允许的最大请求量

  • 利用Redis实现访问次数限流的方法详解

    假设我们要做一个业务需求,这个需求就是限制用户的访问频次.比如1分钟内只能访问20次,10分钟内只能访问200次.因为是用户维度的场景,性能肯定是要首先考虑,那么适合这个场景的非Redis莫属. 最简单的实现,莫过于只是用incr进行计数操作,于是有了下面的代码: long count = redisTemplate.opsForValue().increment("user:1:60"); if (count > maxLimitCount) { throw new Limit

  • Redis限流的几种实现

    目录 一.简单的限流 基本原理 二.漏斗限流 基本原理 Redis-Cell 参考来源 一.简单的限流 基本原理 当系统处理能力有限,如何组织计划外的请求对系统施压.首先我们先看下一些简单的限流策略,防止暴力攻击.比如要对IP访问,没5s只能访问10次,超过进行拦截. 如上图,一般使用滑动窗口来统计区间时间内的访问次数. 使用 zset 记录 IP 访问次数,每个 IP 通过 key 保存下来,score 保存当前时间戳,value 唯一用时间戳或者UUID来实现 代码实现 public cla

  • Redis常见限流算法原理及实现

    目录 前言 简介 固定时间窗口 原理 示例说明 优缺点 相关实现 限流脚本 具体实现 测试 滑动时间窗口 实现原理 示例说明 具体实现 漏桶算法 原理 具体实现 令牌桶算法 原理 具体实现 小结 总结 前言 在高并发系统中,我们通常需要通过各种手段来提供系统的可以用性,例如缓存.降级和限流等,本文将针对应用中常用的限流算法进行详细的讲解. 简介 限流简称流量限速(Rate Limit)是指只允许指定的事件进入系统,超过的部分将被拒绝服务.排队或等待.降级等处理. 常见的限流方案如下: 固定时间窗

  • Go+Redis实现常见限流算法的示例代码

    目录 固定窗口 滑动窗口 hash实现 list实现 漏桶算法 令牌桶 滑动日志 总结 限流是项目中经常需要使用到的一种工具,一般用于限制用户的请求的频率,也可以避免瞬间流量过大导致系统崩溃,或者稳定消息处理速率.并且有时候我们还需要使用到分布式限流,常见的实现方式是使用Redis作为中心存储. 这个文章主要是使用Go+Redis实现常见的限流算法,如果需要了解每种限流算法的原理可以阅读文章 Go实现常见的限流算法 下面的代码使用到了go-redis客户端 固定窗口 使用Redis实现固定窗口比

  • 详解5种Java中常见限流算法

    目录 01固定窗口 02滑动窗口 03漏桶算法 04令牌桶 05滑动日志 06分布式限流 07总结 1.瞬时流量过高,服务被压垮? 2.恶意用户高频光顾,导致服务器宕机? 3.消息消费过快,导致数据库压力过大,性能下降甚至崩溃? ...... 在高并发系统中,出于系统保护角度考虑,通常会对流量进行限流:不但在工作中要频繁使用,而且也是面试中的高频考点. 今天我们将图文并茂地对常见的限流算法分别进行介绍,通过各个算法的特点,给出限流算法选型的一些建议,并给出Java语言实现的代码示例. 01固定窗

  • Golang实现常见的限流算法的示例代码

    目录 固定窗口 滑动窗口 漏桶算法 令牌桶 滑动日志 总结 限流是项目中经常需要使用到的一种工具,一般用于限制用户的请求的频率,也可以避免瞬间流量过大导致系统崩溃,或者稳定消息处理速率 这个文章主要是使用Go实现常见的限流算法,代码参考了文章面试官:来,年轻人!请手撸5种常见限流算法! 和面试必备:4种经典限流算法讲解如果需要Java实现或更详细的算法介绍可以看这两篇文章 固定窗口 每开启一个新的窗口,在窗口时间大小内,可以通过窗口请求上限个请求. 该算法主要是会存在临界问题,如果流量都集中在两

  • redis实现的四种常见限流策略

    目录 引言 固定时间窗口算法 实现 滑动时间窗口算法 实现 漏桶算法 实现 令牌桶算法 引言 在web开发中功能是基石,除了功能以外运维和防护就是重头菜了.因为在网站运行期间可能会因为突然的访问量导致业务异常.也有可能遭受别人恶意攻击 所以我们的接口需要对流量进行限制.俗称的QPS也是对流量的一种描述 针对限流现在大多应该是令牌桶算法,因为它能保证更多的吞吐量.除了令牌桶算法还有他的前身漏桶算法和简单的计数算法 下面我们来看看这四种算法 固定时间窗口算法 固定时间窗口算法也可以叫做简单计数算法.

  • Java 常见的限流算法详细分析并实现

    目录 为什么要限流 限流算法 计数器限流 漏桶限流 令牌桶限流 为什么要限流 在保证可用的情况下尽可能多增加进入的人数,其余的人在排队等待,或者返回友好提示,保证里面的进行系统的用户可以正常使用,防止系统雪崩. 限流算法 限流算法很多,常见的有三类,分别是 计数器算法 .漏桶算法.令牌桶算法 . (1)计数器:           在一段时间间隔内,处理请求的最大数量固定,超过部分不做处理. (2)漏桶:           漏桶大小固定,处理速度固定,但请求进入速度不固定(在突发情况请求过多时

  • Python+redis通过限流保护高并发系统

    保护高并发系统的三大利器:缓存.降级和限流.那什么是限流呢?用我没读过太多书的话来讲,限流就是限制流量.我们都知道服务器的处理能力是有上限的,如果超过了上限继续放任请求进来的话,可能会发生不可控的后果.而通过限流,在请求数量超出阈值的时候就排队等待甚至拒绝服务,就可以使系统在扛不住过高并发的情况下做到有损服务而不是不服务. 举个例子,如各地都出现口罩紧缺的情况,广州政府为了缓解市民买不到口罩的状况,上线了预约服务,只有预约到的市民才能到指定的药店购买少量口罩.这就是生活中限流的情况,说这个也是希

  • Java 实现滑动时间窗口限流算法的代码

    在网上搜滑动时间窗口限流算法,大多都太复杂了,本人实现了个简单的,先上代码: package cn.dijia478.util; import java.time.LocalTime; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Random; import java.util.concurrent.ConcurrentHashMap; /** * 滑动时间窗

  • 使用Redis实现令牌桶算法原理解析

    在限流算法中有一种令牌桶算法,该算法可以应对短暂的突发流量,这对于现实环境中流量不怎么均匀的情况特别有用,不会频繁的触发限流,对调用方比较友好. 例如,当前限制10qps,大多数情况下不会超过此数量,但偶尔会达到30qps,然后很快就会恢复正常,假设这种突发流量不会对系统稳定性产生影响,我们可以在一定程度上允许这种瞬时突发流量,从而为用户带来更好的可用性体验.这就是使用令牌桶算法的地方. 令牌桶算法原理 如下图所示,该算法的基本原理是:有一个容量为X的令牌桶,每Y单位时间内将Z个令牌放入该桶.如

随机推荐