python提取内容关键词的方法

本文实例讲述了python提取内容关键词的方法。分享给大家供大家参考。具体分析如下:

一个非常高效的提取内容关键词的python代码,这段代码只能用于英文文章内容,中文因为要分词,这段代码就无能为力了,不过要加上分词功能,效果和英文是一样的。

代码如下:

# coding=UTF-8
import nltk
from nltk.corpus import brown
# This is a fast and simple noun phrase extractor (based on NLTK)
# Feel free to use it, just keep a link back to this post
# http://thetokenizer.com/2013/05/09/efficient-way-to-extract-the-main-topics-of-a-sentence/
# Create by Shlomi Babluki
# May, 2013
 
# This is our fast Part of Speech tagger
#############################################################################
brown_train = brown.tagged_sents(categories='news')
regexp_tagger = nltk.RegexpTagger(
    [(r'^-?[0-9]+(.[0-9]+)?$', 'CD'),
     (r'(-|:|;)$', ':'),
     (r'\'*$', 'MD'),
     (r'(The|the|A|a|An|an)$', 'AT'),
     (r'.*able$', 'JJ'),
     (r'^[A-Z].*$', 'NNP'),
     (r'.*ness$', 'NN'),
     (r'.*ly$', 'RB'),
     (r'.*s$', 'NNS'),
     (r'.*ing$', 'VBG'),
     (r'.*ed$', 'VBD'),
     (r'.*', 'NN')
])
unigram_tagger = nltk.UnigramTagger(brown_train, backoff=regexp_tagger)
bigram_tagger = nltk.BigramTagger(brown_train, backoff=unigram_tagger)
#############################################################################
# This is our semi-CFG; Extend it according to your own needs
#############################################################################
cfg = {}
cfg["NNP+NNP"] = "NNP"
cfg["NN+NN"] = "NNI"
cfg["NNI+NN"] = "NNI"
cfg["JJ+JJ"] = "JJ"
cfg["JJ+NN"] = "NNI"
#############################################################################
class NPExtractor(object):
    def __init__(self, sentence):
        self.sentence = sentence
    # Split the sentence into singlw words/tokens
    def tokenize_sentence(self, sentence):
        tokens = nltk.word_tokenize(sentence)
        return tokens
    # Normalize brown corpus' tags ("NN", "NN-PL", "NNS" > "NN")
    def normalize_tags(self, tagged):
        n_tagged = []
        for t in tagged:
            if t[1] == "NP-TL" or t[1] == "NP":
                n_tagged.append((t[0], "NNP"))
                continue
            if t[1].endswith("-TL"):
                n_tagged.append((t[0], t[1][:-3]))
                continue
            if t[1].endswith("S"):
                n_tagged.append((t[0], t[1][:-1]))
                continue
            n_tagged.append((t[0], t[1]))
        return n_tagged
    # Extract the main topics from the sentence
    def extract(self):
        tokens = self.tokenize_sentence(self.sentence)
        tags = self.normalize_tags(bigram_tagger.tag(tokens))
        merge = True
        while merge:
            merge = False
            for x in range(0, len(tags) - 1):
                t1 = tags[x]
                t2 = tags[x + 1]
                key = "%s+%s" % (t1[1], t2[1])
                value = cfg.get(key, '')
                if value:
                    merge = True
                    tags.pop(x)
                    tags.pop(x)
                    match = "%s %s" % (t1[0], t2[0])
                    pos = value
                    tags.insert(x, (match, pos))
                    break
        matches = []
        for t in tags:
            if t[1] == "NNP" or t[1] == "NNI":
            #if t[1] == "NNP" or t[1] == "NNI" or t[1] == "NN":
                matches.append(t[0])
        return matches
# Main method, just run "python np_extractor.py"
def main():
    sentence = "Swayy is a beautiful new dashboard for discovering and curating online content."
    np_extractor = NPExtractor(sentence)
    result = np_extractor.extract()
    print "This sentence is about: %s" % ", ".join(result)
if __name__ == '__main__':
    main()

希望本文所述对大家的Python程序设计有所帮助。

(0)

相关推荐

  • 从零学python系列之从文件读取和保存数据

    在HeadFirstPython网站中下载所有文件,解压后以chapter 3中的"sketch.txt"为例: 新建IDLE会话,首先导入os模块,并将工作目录却换到包含文件"sketch.txt"的文件夹,如C:\\Python33\\HeadFirstPython\\chapter3 复制代码 代码如下: >>> import os>>> os.getcwd()    #查看当前工作目录'C:\\Python33'>&

  • Python基本数据类型详细介绍

    1.空(None)表示该值是一个空对象,空值是Python里一个特殊的值,用None表示.None不能理解为0,因为0是有意义的,而None是一个特殊的空值.2.布尔类型(Boolean)在Python中,None.任何数值类型中的0.空字符串"".空元组().空列表[].空字典{}都被当作False,还有自定义类型,如果实现了__nonzero__()或__len__()方法且方法返回0或False,则其实例也被当作False,其他对象均为True布尔值和布尔代数的表示完全一致,一个

  • Python实现从url中提取域名的几种方法

    从url中找到域名,首先想到的是用正则,然后寻找相应的类库.用正则解析有很多不完备的地方,url中有域名,域名后缀一直在不断增加等.通过google查到几种方法,一种是用Python中自带的模块和正则相结合来解析域名,另一种是使第三方用写好的解析模块直接解析出域名. 要解析的url 复制代码 代码如下: urls = ["http://meiwen.me/src/index.html",           "http://1000chi.com/game/index.htm

  • python使用正则表达式提取网页URL的方法

    本文实例讲述了python使用正则表达式提取网页URL的方法.分享给大家供大家参考.具体实现方法如下: import re import urllib url="http://www.jb51.net" s=urllib.urlopen(url).read() ss=s.replace(" ","") urls=re.findall(r"<a.*?href=.*?<\/a>",ss,re.I) for i i

  • Python进行数据提取的方法总结

    准备工作 首先是准备工作,导入需要使用的库,读取并创建数据表取名为loandata. import numpy as np import pandas as pd loandata=pd.DataFrame(pd.read_excel('loan_data.xlsx')) 设置索引字段 在开始提取数据前,先将member_id列设置为索引字段.然后开始提取数据. Loandata = loandata.set_index('member_id') 按行提取信息 第一步是按行提取数据,例如提取某个

  • python 提取文件的小程序

    以前提取这些文件用的是一同事些的批处理文件:用起来不怎么顺手,刚好最近在学些python,所有就自己动手写了一个python提取文件的小程序:1.原理 提取文件的原理很简单,就是到一个指定的目录,找出最后修改时间大于给定时间的文件,然后将他们复制到目标目录,目标目录的结构必须和原始目录一致,这样工程人员拿到后就可以直接覆盖整个目录: 2.实现 为了程序的通用,我定义了下面的配置文件 config.xml 复制代码 代码如下: <?xml version="1.0" encodin

  • python处理json数据中的中文

    python中自带了处理python的模块,使用时候直接import json即可. 使用loads方法即可将json字符串转换成python对象,对应关系如下: JSON     Python object   dict array    list string   unicode number   (int) int, long number   (real) float true     True false    False null     None 但在使用json模块的时候需要注意

  • 使用python提取html文件中的特定数据的实现代码

    例如 具有如下结构的html文件 复制代码 代码如下: <div class='entry-content'> <p>感兴趣内容1</p> <p>感兴趣内容2</p> -- <p>感兴趣内容n</p> </div> <div class='content'> <p>内容1</p> <p>内容2</p> -- <p>内容n</p>

  • python数据库操作常用功能使用详解(创建表/插入数据/获取数据)

    实例1.取得MYSQL版本 复制代码 代码如下: # -*- coding: UTF-8 -*-#安装MYSQL DB for pythonimport MySQLdb as mdbcon = Nonetry:    #连接mysql的方法:connect('ip','user','password','dbname')    con = mdb.connect('localhost', 'root',        'root', 'test');    #所有的查询,都在连接con的一个模块

  • Python操作json数据的一个简单例子

    更多的信息,可以参考python内部的json文档: python>>> help(json) 或者官方文档: http://docs.python.org/library/json.html#module-json. 下面给出一个使用python解析json的简单例子: 复制代码 代码如下: #!/usr/bin/python import json #Function:Analyze json script #Json is a script can descript data st

随机推荐