Python基于OpenCV库Adaboost实现人脸识别功能详解

本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能。分享给大家供大家参考,具体如下:

以前用Matlab写神经网络的面部眼镜识别算法,研究算法逻辑,采集大量训练数据,迭代,计算各感知器的系数。。。相当之麻烦~而现在运用调用pythonOpenCV库Adaboost算法,无需知道算法逻辑,无需进行模型训练,人脸识别变得相当之简单了。
需要用到的库是opencv(open source computer vision),下载安装方式如下:

使用pip install numpy语句安装numpy

(如果出现错误:Microsoft Visual C++ 9.0 is required <unable to find vcvarsall.bat>,使用管理员身份安装 Microsoft Visual C++ 9.0,重新启动计算机,再使用使用pip install numpy语句安装numpy

opencv2.4.10下载

下载之后解压(随便解压到哪里),将解压目录opencv文件夹中,build->python->2.7->x86下的文件cv2.pyd 复制到python2.7\Lib\site-packages 中

测试是否安装成功,执行解压目录下的sources\samples\python\drawing.py或者进入python环境,使用import cv2

首先讲讲需要用到的新函数:

CascadeClassifier()函数,导入分类器

cv2.CascadeClassifier('xxxxx.xml')
#haarcascade_frontalface_alt.xml脸部识别文件
#haarcascade_eye.xml眼部识别文件

函数的参数是xml完整路径(具体看你的opencv安装在哪里的,在opencv\sources\data\haarcascades下面),xml文件中是封装好的算法

detectMultiScale()函数,进行识别

detectMultiScale(image,scaleFactor,minNeighbors,flags,minSize,maxSize)
  • 最终返回值为识别出的矩阵框[x, y, w, h],(x,y)左上角起始坐标,w宽,h高
  • image:用于检测的图像
  • scaleFactor:前后两次相继的扫描中,搜索窗口的比例系数.例如1.1指将搜索窗口依次扩大10%。图片小的时候,比例系数尽量小能提高准确率
  • minNeighbors:构成检测目标的相邻矩形的最小个数。一般使用2or3,为0时返回所有的被检候选矩形框。

rectangle()函数,在图片上画矩阵

cv2.rectangle(image,(x,y),(x+w,y+h),(0,255,0),2)
  • image是原始图片
  • (x,y)是矩形左上角
  • (x+w,y+h)是矩形右下角
  • (0,255,0)是矩形的BGR颜色, 为红色
  • 2, 是绘制矩形的线宽

程序逻辑:

导入Haar级联分类器算法,读入要处理图片,将图片变成时候的大小,用detectMultiScale()函数先识别出人脸,在原图上框出,然后提取出识别出的人脸矩形框,在人脸矩形框内识别出眼睛,在原图上框出,展示出识别完的图像。

完整程序及注解:

import cv2
face_cascade = cv2.CascadeClassifier('D:\opencv\sources\data\haarcascades/haarcascade_frontalface_alt.xml')
eye_cascade = cv2.CascadeClassifier('D:\opencv\sources\data\haarcascades/haarcascade_eye.xml')
img1 = cv2.imread('face1.png')
img = cv2.resize(img1,(240,320),interpolation=cv2.INTER_LINEAR)
faces = face_cascade.detectMultiScale(img,1.2,2)
for (x,y,w,h) in faces:
  cv2.rectangle(img,(x,y),(x+w,x+h),(255,0,0),2)#用颜色为BGR(255,0,0)粗度为2的线条在img画出识别出的矩型
  face_re = img[y:y+h,x:x+w]#抽取出框出的脸部部分,注意顺序y在前
  eyes = eye_cascade.detectMultiScale(face_re)#在框出的脸部部分识别眼睛
  for (ex,ey,ew,eh) in eyes:
    cv2.rectangle(face_re,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
cv2.imshow('img',img)
key = cv2.waitKey(0)
if key==27:
  cv2.destoryWindow('img')

最后po个作者的照骗,展示一下最终的识别效果:


1--识别前


1——识别后


2——识别前


2——识别后

问题:

1.斜的脸识别率不高
2.大小不同的图片识别率不同,所有最好把图片处理成差不多大小的图片
3.眼部有遮挡物时,眼睛识别率底,比如:有眼睛,有头发

欢迎有能解决上面问题的朋友能够交流一下~

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python结合opencv实现人脸检测与跟踪

    模式识别课上老师留了个实验,在VC++环境下利用OpenCV库编程实现人脸检测与跟踪. 然后就开始下载opencv和vs2012,再然后,配置了好几次还是配置不成功,这里不得不吐槽下微软,软件做这么大,这么难用真的好吗? 于是就尝试了一下使用python完成实验任务,大概过程就是这样子的: 首先,配置运行环境: 下载opencv和python的比较新的版本,推荐opencv2.4.X和python2.7.X. 直接去官网下载就ok了,python安装时一路next就行,下载的opencv.exe

  • Python facenet进行人脸识别测试过程解析

    1.简介:facenet 是基于 TensorFlow 的人脸识别开源库,有兴趣的同学可以扒扒源代码: https://github.com/davidsandberg/facenet 2.安装和配置 facenet 我们先将 facenet 源代码下载下来: git clone https://github.com/davidsandberg/facenet.git 在使用 facenet 前,务必安装下列这些库包: 或者直接移动到 facenet 目录下,一键安装 pip install -

  • 用Python识别人脸,人种等各种信息

    最近几天了解了一下人脸识别,应用场景可以是图片标注,商品图和广告图中有没有模特,有几个模特,模特的性别,年龄,颜值,表情等数据的挖掘. 基础的识别用dlib来实现,dlib是一个机器学习的包,主要用C++写的,但是也有Python版本.其中最流行的一个功能是Facial Landmark Detection, 配备已经训练好的轮廓预测模型,叫shape_predictor_68_face_landmarks.dat, 从名字就可以看出,它可以检测出面部的68个关键点,包括五官和外轮廓等. 安装d

  • python实现人脸识别经典算法(一) 特征脸法

    近来想要做一做人脸识别相关的内容,主要是想集成一个系统,看到opencv已经集成了三种性能较好的算法,但是还是想自己动手试一下,毕竟算法都比较初级. 操作环境:python2.7 第三方库:opencv for python.numpy 第一种比较经典的算法就是特征脸法,本质上其实就是PCA降维,这种算法的基本思路是,把二维的图像先灰度化,转化为一通道的图像,之后再把它首尾相接转化为一个列向量,假设图像大小是20*20的,那么这个向量就是400维,理论上讲组织成一个向量,就可以应用任何机器学习算

  • Python OpenCV利用笔记本摄像头实现人脸检测

    本文实例为大家分享了Python OpenCV利用笔记本摄像头实现人脸检测的具体代码,供大家参考,具体内容如下 1.安装opencv 首先参考其他文章安装pip. 之后以管理员身份运行命令提示符,输入以下代码安装opencv pip install --user opencv-python 可以使用以下代码测试安装是否成功 #导入opencv模块 import cv2 #捕捉帧,笔记本摄像头设置为0即可 capture = cv2.VideoCapture(0) #循环显示帧 while(Tru

  • Python基于Opencv来快速实现人脸识别过程详解(完整版)

    前言 随着人工智能的日益火热,计算机视觉领域发展迅速,尤其在人脸识别或物体检测方向更为广泛,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界. 首先看一下本实验需要的数据集,为了简便我们只进行两个人的识别,选取了beyond乐队的主唱黄家驹和贝斯手黄家强,这哥俩长得有几分神似,这也是对人脸识别的一个考验: 两个文件夹,一个为训练数据集,一个为测试数据集,训练数据集中有两个文件夹0和1,之前看一些资料有说这里要遵循"slabel"命名规则,但后面处理起来比较麻烦,

  • Python 40行代码实现人脸识别功能

    前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了.这些人里包括曾经的我自己.其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难.今天我们就来看看如何在40行代码以内简单地实现人脸识别. 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题.但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的.其实,人脸检测解决的问题是确定一张图上有木有人脸,而人

  • Python基于OpenCV库Adaboost实现人脸识别功能详解

    本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能.分享给大家供大家参考,具体如下: 以前用Matlab写神经网络的面部眼镜识别算法,研究算法逻辑,采集大量训练数据,迭代,计算各感知器的系数...相当之麻烦~而现在运用调用pythonOpenCV库Adaboost算法,无需知道算法逻辑,无需进行模型训练,人脸识别变得相当之简单了. 需要用到的库是opencv(open source computer vision),下载安装方式如下: 使用pip install num

  • 基于Opencv图像识别实现答题卡识别示例详解

    目录 1. 项目分析 2.项目实验 3.项目结果 总结 在观看唐宇迪老师图像处理的课程中,其中有一个答题卡识别的小项目,在此结合自己理解做一个简单的总结. 1. 项目分析 首先在拿到项目时候,分析项目目的是什么,要达到什么样的目标,有哪些需要注意的事项,同时构思实验的大体流程. 图1. 答题卡测试图像 比如在答题卡识别的项目中,针对测试图片如图1 ,首先应当实现的功能是: 能够捕获答题卡中的每个填涂选项. 将获取的填涂选项与正确选项做对比计算其答题正确率. 2.项目实验 在对测试图像进行形态学操

  • 基于opencv和pillow实现人脸识别系统(附demo)

    目录 一.人脸检测和数据收集 二.训练识别器 三.人脸识别和显示 本文不涉及分类器.训练识别器等算法原理,仅包含对其应用(未来我也会写自己对机器学习算法原理的一些观点和了解) 首先我们需要知道的是利用现有框架做一个人脸识别系统并不难,然后就开始我们的系统开发吧. 我们的系统主要分为三个部分,然后我还会提出对补获图片不能添加中文的解决方案.我们需要完成的任务:1.人脸检测和数据收集2.训练识别器3.人脸识别和显示 在读此篇文章之前我相信你已经做了python环境部署和opencv模块的下载安装工作

  • 基于python-pptx库中文文档及使用详解

    个人使用样例及部分翻译自官方文档,并详细介绍chart的使用 一:基础应用 1.创建pptx文档类并插入一页幻灯片 from pptx import Presentation prs = Presentation() slide = prs.slides.add_slide(prs.slide_layouts[1]) # 对ppt的修改 prs.save('python-pptx.pptx') prs.slide_layouts中一共预存有1-48种,采用第六种为空白幻灯片 例slide_lay

  • Python基于纹理背景和聚类算法实现图像分割详解

    目录 一.基于纹理背景的图像分割 二.基于K-Means聚类算法的区域分割 三.总结 一.基于纹理背景的图像分割 该部分主要讲解基于图像纹理信息(颜色).边界信息(反差)和背景信息的图像分割算法.在OpenCV中,GrabCut算法能够有效地利用纹理信息和边界信息分割背景,提取图像目标物体.该算法是微软研究院基于图像分割和抠图的课题,它能有效地将目标图像分割提取,如图1所示[1]. GrabCut算法原型如下所示: mask, bgdModel, fgdModel = grabCut(img,

  • python中requests库session对象的妙用详解

    在进行接口测试的时候,我们会调用多个接口发出多个请求,在这些请求中有时候需要保持一些共用的数据,例如cookies信息. 妙用1 requests库的session对象能够帮我们跨请求保持某些参数,也会在同一个session实例发出的所有请求之间保持cookies. 举个栗子,跨请求保持cookies,在命令行上输入下面命令: # 创建一个session对象 s = requests.Session() # 用session对象发出get请求,设置cookies s.get('http://ht

  • Python 基于FIR实现Hilbert滤波器求信号包络详解

    在通信领域,可以通过希尔伯特变换求解解析信号,进而求解窄带信号的包络. 实现希尔伯特变换有两种方法,一种是对信号做FFT,单后只保留单边频谱,在做IFFT,我们称之为频域方法:另一种是基于FIR根据传递函数设计一个希尔伯特滤波器,我们称之为时域方法. # -*- coding:utf8 -*- # @TIME : 2019/4/11 18:30 # @Author : SuHao # @File : hilberfilter.py import scipy.signal as signal im

  • Python的Pillow库进行图像文件处理(图文详解)

    目录 目标 1.打开PyCharm,创建一个新的.py文件 2.配置环境 3.PIL库概述 4.代码段 本文详解的讲解了使用Pillow库进行图片的简单处理,使用PyCharm开发Python的详细过程和各种第三方库的安装与使用. 目标 1.熟悉Python的开发环境: 2.掌握Pillow库的安装方法: 3.熟悉Pillow库的使用方法. 开始吧! 1.打开PyCharm,创建一个新的.py文件 2.配置环境 本文中使用Python3.6版本开发 点击ok 2.库的安装使用 在搜索栏中输入pi

  • Python使用Crypto库实现加密解密的示例详解

    目录 一:crypto库安装 二:python使用crypto 1:crypto的加密解密组件des.py 2:crypto组件使用 知识补充 一:crypto库安装 pycrypto,pycryptodome是crypto第三方库,pycrypto已经停止更新三年了,所以不建议安装这个库:pycryptodome是pycrypto的延伸版本,用法和pycrypto 是一模一样的:所以只需要安装pycryptodome就可以了 pip install pycryptodome 二:python使

随机推荐