tensorflow 输出权重到csv或txt的实例

实例如下所示:

import numpy as np
W_val, b_val = sess.run([weights_tensor, biases_tensor])
np.savetxt("W.csv", W_val, delimiter=",")
np.savetxt("b.csv", b_val, delimiter=",")

以上这篇tensorflow 输出权重到csv或txt的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • TensorFlow中权重的随机初始化的方法

    一开始没看懂stddev是什么参数,找了一下,在tensorflow/python/ops里有random_ops,其中是这么写的: def random_normal(shape, mean=0.0, stddev=1.0, dtype=types.float32, seed=None, name=None): """Outputs random values from a normal distribution. Args: shape: A 1-D integer Te

  • tensorflow输出权重值和偏差的方法

    使用tensorflow 训练模型时,我们可以使用 tensorflow自带的 Save模块 tf.train.Saver()来保存模型,使用方式很简单 就是在训练完模型后,调用saver.save()即可 saver = tf.train.Saver(write_version=tf.train.SaverDef.V2) saver.save(sess, save_dir+"crfmodel.ckpt", global_step=0) 重新载入模型 saver = tf.train.

  • 详解tensorflow载入数据的三种方式

    Tensorflow数据读取有三种方式: Preloaded data: 预加载数据 Feeding: Python产生数据,再把数据喂给后端. Reading from file: 从文件中直接读取 这三种有读取方式有什么区别呢? 我们首先要知道TensorFlow(TF)是怎么样工作的. TF的核心是用C++写的,这样的好处是运行快,缺点是调用不灵活.而Python恰好相反,所以结合两种语言的优势.涉及计算的核心算子和运行框架是用C++写的,并提供API给Python.Python调用这些A

  • tensorflow 输出权重到csv或txt的实例

    实例如下所示: import numpy as np W_val, b_val = sess.run([weights_tensor, biases_tensor]) np.savetxt("W.csv", W_val, delimiter=",") np.savetxt("b.csv", b_val, delimiter=",") 以上这篇tensorflow 输出权重到csv或txt的实例就是小编分享给大家的全部内容了,希

  • python读取和保存为excel、csv、txt文件及对DataFrame文件的基本操作指南

    目录 一.对excel文件的处理 1.读取excel文件并将其内容转化DataFrame和矩阵形式 2.将数据写入xlsx文件 3.将数据保存为xlsx文件 4.使用excel对数据进行处理的缺点 二.对csv文件的处理 1.读取csv文件并将其内容转化为DataFrame形式 2.将DataFrame保存为csv文件 3.优缺点 三.对txt文件的处理 1.读取txt文件 2.将数据写入txt文件 3.将数据保存到txt文件 四.对DataFrame文件的基本操作 1.DataFrame的创建

  • 利用python将pdf输出为txt的实例讲解

    一个礼拜前一个同学问我这个事情,由于之前在参加华为的比赛,所以赛后看了一下,据说需要用到pdfminer这个包.于是安装了一下,安装过程很简单: sudo pip install pdfminer; 中间也没有任何的报错.至于如何调用,本人也没有很好的研究过pdfminer这个库,于是开始了百度-- 官方文档:http://www.unixuser.org/~euske/python/pdfminer/index.html 完全使用python编写. (适用于2.4或更新版本) 解析,分析,并转

  • python读取csv和txt数据转换成向量的实例

    最近写程序需要从文件中读取数据,并把读取的数据转换成向量. 查阅资料之后找到了读取csv文件和txt文件两种方式,下面结合自己的实验过程,做简要记录,供大家参考: 1.读取csv文件的数据 import csv filtpath = "data_test.csv" with open(filtpath,'r') as csvfile: reader = csv.reader(csvfile) header = next(reader) data = [] for line in rea

  • python 将print输出的内容保存到txt文件中

    具体代码如下所示: import sys import os class Logger(object): def __init__(self, filename="Default.log"): self.terminal = sys.stdout self.log = open(filename, "a") def write(self, message): self.terminal.write(message) self.log.write(message) d

  • python生成以及打开json、csv和txt文件的实例

    生成txt文件: mesg = "hello world" with open("test.txt", "w") as f: f.write("{}".format(mesg)) print("加载完成!") 生成json文件: import json mesg = {"key": "value"} with open("test.json", &

  • tensorflow 模型权重导出实例

    tensorflow在保存权重模型时多使用tf.train.Saver().save 函数进行权重保存,保存的ckpt文件无法直接打开,不利于将模型权重导入到其他框架使用(如Caffe.Keras等). 好在tensorflow提供了相关函数 tf.train.NewCheckpointReader 可以对ckpt文件进行权重查看,因此可以通过该函数进行数据导出. import tensorflow as tf import h5py cpktLogFileName = r'./checkpoi

  • TensorFlow 输出checkpoint 中的变量名与变量值方式

    废话不多说,直接看代码吧! import os from tensorflow.python import pywrap_tensorflow model_dir="/xxxxxxxxx/model.ckpt" #checkpoint的文件位置 # Read data from checkpoint file reader = pywrap_tensorflow.NewCheckpointReader(model_dir) var_to_shape_map = reader.get_v

随机推荐