数据结构之AVL树详解

1. 概述

AVL树是最早提出的自平衡二叉树,在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树。AVL树得名于它的发明者G.M. Adelson-Velsky和E.M. Landis。AVL树种查找、插入和删除在平均和最坏情况下都是O(log n),增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。本文介绍了AVL树的设计思想和基本操作。

2. 基本术语

有四种种情况可能导致二叉查找树不平衡,分别为:
(1)LL:插入一个新节点到根节点的左子树(Left)的左子树(Left),导致根节点的平衡因子由1变为2
(2)RR:插入一个新节点到根节点的右子树(Right)的右子树(Right),导致根节点的平衡因子由-1变为-2
(3)LR:插入一个新节点到根节点的左子树(Left)的右子树(Right),导致根节点的平衡因子由1变为2
(4)RL:插入一个新节点到根节点的右子树(Right)的左子树(Left),导致根节点的平衡因子由-1变为-2
针对四种种情况可能导致的不平衡,可以通过旋转使之变平衡。有两种基本的旋转:
(1)左旋转:将根节点旋转到(根节点的)右孩子的左孩子位置
(2)右旋转:将根节点旋转到(根节点的)左孩子的右孩子位置

3. AVL树的旋转操作

AVL树的基本操作是旋转,有四种旋转方式,分别为:左旋转,右旋转,左右旋转(先左后右),右左旋转(先右后左),实际上,这四种旋转操作两两对称,因而也可以说成两类旋转操作。
基本的数据结构:

代码如下:

typedef struct Node* Tree;
typedef struct Node* Node_t;
typedef Type int;
 
struct Node{
 Node_t left;
 Node_t right;
 int height;
 Type data;
};
int Height(Node_t node) {
 return node->height;
}

3.1 LL

LL情况需要右旋解决,如下图所示:


代码为:

代码如下:

Node_t RightRotate(Node_t a) {
 b = a->left;
 a->left = b->right;
 b->right = a;
 a->height = Max(Height(a->left), Height(a->right));
 b->height = Max(Height(b->left), Height(b->right));
 return b;
}

3.2 RR
RR情况需要左旋解决,如下图所示:

代码为:

代码如下:

Node_t LeftRotate(Node_t a) {
 b = a->right;
 a->right = b->left;
 b->left = a;
 a->height = Max(Height(a->left), Height(a->right));
 b->height = Max(Height(b->left), Height(b->right));
 return b;
}

3.3 LR

LR情况需要左右(先B左旋转,后A右旋转)旋解决,如下图所示:

代码为:

代码如下:

Node_t LeftRightRotate(Node_t a) {
 a->left = LeftRotate(a->left);
 return RightRotate(a);
}

3.4 RL

RL情况需要右左旋解决(先B右旋转,后A左旋转),如下图所示:

代码为:

代码如下:

Node_t RightLeftRotate(Node_t a) {
 a->right = RightRotate(a->right);
 return LeftRotate(a);
}

4. AVL数的插入和删除操作

(1) 插入操作:实际上就是在不同情况下采用不同的旋转方式调整整棵树,具体代码如下:

代码如下:

Node_t Insert(Type x, Tree t) {
 if(t == NULL) {
   t = NewNode(x);
 } else if(x < t->data) {
   t->left = Insert(t->left);
   if(Height(t->left) - Height(t->right) == 2) {
    if(x < t->left->data) {
     t = RightRotate(t);
    } else {
     t = LeftRightRotate(t);
    }
  }
 } else {
   t->right = Insert(t->right);
   if(Height(t->right) - Height(t->left) == 2) {
    if(x > t->right->data) {
     t = LeftRotate(t);
    } else {
     t = RightLeftRotate(t);
    }
  }
 }
 t->height = Max(Height(t->left), Height(t->right)) + 1;
 return t;
}

(2) 删除操作:首先定位要删除的节点,然后用该节点的右孩子的最左孩子替换该节点,并重新调整以该节点为根的子树为AVL树,具体调整方法跟插入数据类似,代码如下:

代码如下:

Node_t Delete(Type x, Tree t) {
 if(t == NULL) return NULL;
 if(t->data == x) {
  if(t->right == NULL) {
   Node_t temp = t;
   t = t->left;
   free(temp);
  } else {
   Node_t head = t->right;
   while(head->left) {
    head = head->left;
   }
   t->data = head->data; //just copy data
   t->right = Delete(t->data, t->right);
   t->height = Max(Height(t->left), Height(t->right)) + 1;
  }
  return t;
 } else if(t->data < x) {
  Delete(x, t->right);
  if(t->right) Rotate(x, t->right);
 } else {
  Delete(x, t->left);
  if(t->left) Rotate(x, t->left);
 }
 if(t) Rotate(x, t);
}

5. 总结

AVL树是最早的自平衡二叉树,相比于后来出现的平衡二叉树(红黑树,treap,splay树)而言,它现在应用较少,但研究AVL树对于了解后面出现的常用平衡二叉树具有重要意义。

6. 参考资料

(1) 数据结构(C语言版) 严蔚敏,吴伟民著
(2) http://zh.wikipedia.org/wiki/AVL%E6%A0%91

(0)

相关推荐

  • 数据结构之伸展树详解

    1. 概述 二叉查找树(Binary Search Tree,也叫二叉排序树,即Binary Sort Tree)能够支持多种动态集合操作,它可以用来表示有序集合.建立索引等,因而在实际应用中,二叉排序树是一种非常重要的数据结构. 从算法复杂度角度考虑,我们知道,作用于二叉查找树上的基本操作(如查找,插入等)的时间复杂度与树的高度成正比.对一个含n个节点的完全二叉树,这些操作的最坏情况运行时间为O(log n).但如果因为频繁的删除和插入操作,导致树退化成一个n个节点的线性链(此时即为一个单链表

  • 数据结构之堆详解

    1. 概述 堆(也叫优先队列),是一棵完全二叉树,它的特点是父节点的值大于(小于)两个子节点的值(分别称为大顶堆和小顶堆).它常用于管理算法执行过程中的信息,应用场景包括堆排序,优先队列等. 2. 堆的基本操作 堆是一棵完全二叉树,高度为O(lg n),其基本操作至多与树的高度成正比.在介绍堆的基本操作之前,先介绍几个基本术语: A:用于表示堆的数组,下标从1开始,一直到n PARENT(t):节点t的父节点,即floor(t/2) RIGHT(t):节点t的左孩子节点,即:2*t LEFT(t

  • 数据结构之Treap详解

    1. 概述 同splay tree一样,treap也是一个平衡二叉树,不过Treap会记录一个额外的数据,即优先级.Treap在以关键码构成二叉搜索树的同时,还按优先级来满足堆的性质.因而,Treap=tree+heap.这里需要注意的是,Treap并不是二叉堆,二叉堆必须是完全二叉树,而Treap可以并不一定是. 2. Treap基本操作 为了使Treap 中的节点同时满足BST性质和最小堆性质,不可避免地要对其结构进行调整,调整方式被称为旋转.在维护Treap 的过程中,只有两种旋转,分别是

  • 数据结构之AVL树详解

    1. 概述 AVL树是最早提出的自平衡二叉树,在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.AVL树得名于它的发明者G.M. Adelson-Velsky和E.M. Landis.AVL树种查找.插入和删除在平均和最坏情况下都是O(log n),增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.本文介绍了AVL树的设计思想和基本操作. 2. 基本术语 有四种种情况可能导致二叉查找树不平衡,分别为: (1)LL:插入一个新节点到根节点的左子树(Left)的左子树

  • Java数据结构之线段树详解

    目录 介绍 代码实现 线段树构建 区间查询 更新 总结 介绍 线段树(又名区间树)也是一种二叉树,每个节点的值等于左右孩子节点值的和,线段树示例图如下 以求和为例,根节点表示区间0-5的和,左孩子表示区间0-2的和,右孩子表示区间3-5的和,依次类推. 代码实现 /** * 使用数组实现线段树 */ public class SegmentTree<E> { private Node[] data; private int size; private Merger<E> merge

  • 数据结构 红黑树的详解

    数据结构 红黑树的详解 红黑树是具有下列着色性质的二叉查找树: 1.每一个节点或者着红色,或者着黑色. 2.根是黑色的. 3.如果一个节点是红色的,那么它的子节点必须是黑色. 4.从一个节点到一个NULL指针的每一条路径必须包含相同数目的黑色节点. 下面是一棵红黑树. 1.自底向上插入 通常把新项作为树叶放到树中.如果我们把该项涂成黑色,那么违反条件4,因为将会建立一条更长的黑节点路径.因此这一项必须涂成红色.如果它的父节点是黑色的,插入完成.如果父节点是红色的,那么违反条件3.在这种情况下我们

  • Java数据结构之散列表详解

    目录 介绍 1 散列表概述 1.1 散列表概述 1.2 散列冲突(hash collision) 2 散列函数的选择 2.1 散列函数的要求 2.2 散列函数构造方法 3 散列冲突的解决 3.1 分离链接法 3.2 开放定址法 3.3 再散列法 4 散列表的简单实现 4.1 测试 介绍 本文详细介绍了散列表的概念.散列函数的选择.散列冲突的解决办法,并且最后提供了一种散列表的Java代码实现. 数组的特点是寻址容易,插入和删除困难:而链表的特点是寻址困难,插入和删除容易.而对于tree结构,它们

  • java 数据结构并查集详解

    目录 一.概述 二.实现 2.1 Quick Find实现 2.2 Quick Union实现 三.优化 3.1基于size的优化 3.2基于rank优化 3.2.1路径压缩(Path Compression ) 3.2.2路径分裂(Path Spliting) 3.2.3路径减半(Path Halving) 一.概述 并查集:一种树型数据结构,用于解决一些不相交集合的合并及查询问题.例如:有n个村庄,查询2个村庄之间是否有连接的路,连接2个村庄 两大核心: 查找 (Find) : 查找元素所在

  • Python数据结构之递归可视化详解

    目录 1.学习目标 2.递归的调用 3.递归可视化 3.1 turtle 库简介 3.1 递归绘图 1.学习目标 递归函数是直接调用自己或通过一系列语句间接调用自己的函数.递归在程序设计有着举足轻重的作用,在很多情况下,借助递归可以优雅的解决问题.虽然使用递归可以快速的解决一些难题,但由于递归的抽象性,使递归难以掌握.为了更好的理解递归函数背后的思想,本节主要通过可视化方式来了解递归函数的执行步骤. 通过本节学习,应掌握以下内容: 提高对递归的理解 利用可视化理解递归函数背后的思想 2.递归的调

  • C++数据结构之AVL树的实现

    目录 1.概念 (1)二叉搜索树的缺点 (2)定义节点 2.插入 (1)拆分 (2)找节点与插节点 (3)更新平衡因子与旋转 3.判断 4.完整代码及测试代码 完整代码 测试代码 1.概念 (1)二叉搜索树的缺点 要手撕AVL树,我们首先要知道什么是AVL树.AVL树是在二叉搜索树的基础之上改造的.当我们插入的是一个有序的序列的时候,二叉搜素树会使用一条直线来进行存储,这样并不利于查找. 当遇到这种情况的时候我们就需要对这棵树来进行调整.AVL树会通过旋转等操作,来规避这种情况.最终满足每一个节

  • Java数据结构之堆(优先队列)详解

    目录 堆的性质 堆的分类 堆的向下调整 堆的建立 堆得向上调整 堆的常用操作 入队列 出队列 获取队首元素 TopK 问题 例子 数组排序 堆的性质 堆逻辑上是一棵完全二叉树,堆物理上是保存在数组中 . 总结:一颗完全二叉树以层序遍历方式放入数组中存储,这种方式的主要用法就是堆的表示. 并且 如果已知父亲(parent) 的下标, 则: 左孩子(left) 下标 = 2 * parent + 1; 右孩子(right) 下标 = 2 * parent + 2; 已知孩子(不区分左右)(child

  • Java数据结构之KMP算法详解以及代码实现

    目录 暴力匹配算法(Brute-Force,BF) 概念和原理 next数组 KMP匹配 KMP全匹配 总结 我们此前学了前缀树Trie的实现原理以及Java代码的实现.Trie树很好,但是它只能基于前缀匹配实现功能.但是如果我们的需求是:一个已知字符串中查找子串,并且子串并不一定符合前缀匹配,那么此时Trie树就无能为力了. 实际上这种字符串匹配的需求,在开发中非常常见,例如判断一个字符串是否包括某些子串,然后进行分别的处理. 暴力匹配算法(Brute-Force,BF) 这是最常见的算法字符

随机推荐