pandas 数据实现行间计算的方法
如下所示:
###方法1:用shift函数,不用通过循环 import pandas as pd import numpy as np import matplotlib as plt df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD')) df['diff'] = df['A'] - df['A'].shift(1)
以上这篇pandas 数据实现行间计算的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
Python科学计算之Pandas详解
起步 Pandas最初被作为金融数据分析工具而开发出来,因此 pandas 为时间序列分析提供了很好的支持. Pandas 的名称来自于面板数据(panel data)和python数据分析 (data analysis) .panel data是经济学中关于多维数据集的一个术语,在Pandas中也提供了panel的数据类型. 在我看来,对于 Numpy 以及 Matplotlib ,Pandas可以帮助创建一个非常牢固的用于数据挖掘与分析的基础.而Scipy当然是另一个主要的也十分出色的科学计
-
pandas数据框,统计某列数据对应的个数方法
现在要解决的问题如下: 我们有一个数据的表 第7列有许多数字,并且是用逗号分隔的,数字又有一个对应的关系: 我们要得到第7列对应关系的统计,就是每一行的第7列a有多少个,b有多少个 好了,我给的解决方法如下: #!/bin/python #-*-coding:UTF-8-*- import pandas as pd import numpy as np dfidspec = pd.read_table("one.txt")#这个是对应关系的文件 dfmgs = pd.read_tabl
-
对pandas进行数据预处理的实例讲解
参加kaggle数据挖掘比赛,就第一个赛题Titanic的数据,学习相关数据预处理以及模型建立,本博客关注基于pandas进行数据预处理过程.包括数据统计.数据离散化.数据关联性分析 引入包和加载数据 import pandas as pd import numpy as np train_df =pd.read_csv('../datas/train.csv') # train set test_df = pd.read_csv('../datas/test.csv') # test set
-
对pandas的算术运算和数据对齐实例详解
pandas可以对不同索引的对象进行算术运算,如果存在不同的索引对,结果的索引就是该索引对的并集. 一.算术运算 a.series的加法运算 s1 = Series([1,2,3],index=["a","b","c"]) s2 = Series([4,5,6],index=["a","c","e"]) print(s1+s2) ''' a 5.0 b NaN c 8.0 e NaN '
-
pandas数据分组和聚合操作方法
<Python for Data Analysis> GroupBy 分组运算:split-apply-combine(拆分-应用-合并) DataFrame可以在其行(axis=0)或列(axis=1)上进行分组.然后,将一个函数应用到各个分组并产生新值.最后,所有这些函数的执行结果会被合并到最终的结果对象中去. GroupBy的size方法可以返回一个含有分组大小的Series. 对分组进行迭代 for (k1,k2), group in df.groupby(['key1','key2'
-
Python+pandas计算数据相关系数的实例
本文主要演示pandas中DataFrame对象corr()方法的用法,该方法用来计算DataFrame对象中所有列之间的相关系数(包括pearson相关系数.Kendall Tau相关系数和spearman秩相关). >>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame({'A':np.random.randint(1, 100, 10), 'B':np.random
-
pandas 数据实现行间计算的方法
如下所示: ###方法1:用shift函数,不用通过循环 import pandas as pd import numpy as np import matplotlib as plt df = pd.DataFrame(np.random.randn(6,4),index=dates,columns=list('ABCD')) df['diff'] = df['A'] - df['A'].shift(1) 以上这篇pandas 数据实现行间计算的方法就是小编分享给大家的全部内容了,希望能给大家
-
基于pandas数据样本行列选取的方法
注:以下代码是基于python3.5.0编写的 import pandas food_info = pandas.read_csv("food_info.csv") # ------------------选取数据样本的第一行-------------------- print(food_info.loc[0]) #------------------选取数据样本的3到6行---------------------- print(food_info.loc[3:6]) #-------
-
Python遍历pandas数据方法总结
前言 Pandas是python的一个数据分析包,提供了大量的快速便捷处理数据的函数和方法.其中Pandas定义了Series 和 DataFrame两种数据类型,这使数据操作变得更简单.Series 是一种一维的数据结构,类似于将列表数据值与索引值相结合.DataFrame 是一种二维的数据结构,接近于电子表格或者mysql数据库的形式. 在数据分析中不可避免的涉及到对数据的遍历查询和处理,比如我们需要将dataframe两列数据两两相除,并将结果存储于一个新的列表中.本文通过该例程介绍对pa
-
使用pandas对矢量化数据进行替换处理的方法
使用pandas处理向量化的数据,进行数据的替换时不仅仅能够进行字符串的替换也能够处理数字. 做简单的示例如下: In [4]: data = Series(range(5)) In [5]: data Out[5]: 0 0 1 1 2 2 3 3 4 4 dtype: int64 In [6]: data.replace(3,333) Out[6]: 0 0 1 1 2 2 3 333 4 4 dtype: int64 In [7]: data Out[7]: 0 0 1 1 2 2 3 3
-
Python使用pandas对数据进行差分运算的方法
如下所示: >>> import pandas as pd >>> import numpy as np # 生成模拟数据 >>> df = pd.DataFrame({'a':np.random.randint(1, 100, 10),\ 'b':np.random.randint(1, 100, 10)},\ index=map(str, range(10))) >>> df a b 0 21
-
pandas 数据归一化以及行删除例程的方法
如下所示: #coding:utf8 import pandas as pd import numpy as np from pandas import Series,DataFrame # 如果有id列,则需先删除id列再进行对应操作,最后再补上 # 统计的时候不需要用到id列,删除的时候需要考虑 # delete row def row_del(df, num_percent, label_len = 0): #print list(df.count(axis=1)) col_num = l
-
Pandas DataFrame 取一行数据会得到Series的方法
Pandas DataFrame 取一行数据会得到Series的方法 如题,想要取如下dataframe的一行数据,以为得到的还是dataframe lista = [1, 3, 7,4,0] listb = [3, 3, 4,4,5] listc = [3, 3, 4,4,6] df1 = pd.DataFrame({'col1':lista,'col2':listb,'colb':listc}) print(df1) print(df1.loc[0,:]) print(type(df1.lo
-
对pandas数据判断是否为NaN值的方法详解
实际项目中有这样的需求,将某一列的值,映射成类别型的数据,这个时候,需要我们将范围等频切分,或者等距切分. 具体的做法可以先看某一些特征的具体分布情况,然后我们选择合适的阈值进行分割. def age_map(x): if x < 26: return 0 elif x >=26 and x <= 35: return 1 elif x > 35 and x <= 45: return 2 elif pd.isnull(x): #判断是否为NaN值,== 和in 都无法判断
-
pandas中的数据去重处理的实现方法
数据去重可以使用duplicated()和drop_duplicates()两个方法. DataFrame.duplicated(subset = None,keep ='first' )返回boolean Series表示重复行 参数: subset:列标签或标签序列,可选 仅考虑用于标识重复项的某些列,默认情况下使用所有列 keep:{'first','last',False},默认'first' first:标记重复,True除了第一次出现. last:标记重复,True除了最后一次出现
随机推荐
- javascript实现的样式表(CSS) 格式整理与压缩
- IIS 性能优化 服务器
- PHP脚本的10个技巧(8)
- KMP算法精解及其Python版的代码示例
- C#:(变量)字段和局部变量的作用域冲突
- Js 回车换行处理的办法及replace方法应用
- PHP+shell实现多线程的方法
- SQL Function 自定义函数详解
- 关于jQuery库冲突的完美解决办法
- jquery使用jquery.zclip插件复制对象的实例教程
- hover的用法及live的用法介绍(鼠标悬停效果)
- Javascript中设置默认参数值示例
- php打开文件fopen函数的使用说明
- Android编程之图片相关代码集锦
- Yii2 RESTful中api的使用及开发实例详解
- Android设计模式之单例模式解析
- c# 获取网页中指定的字符串信息的实例代码
- 微信小程序如何获取用户信息
- C语言实现通讯录功能
- 使用PyQtGraph绘制精美的股票行情K线图的示例代码