Python排序搜索基本算法之插入排序实例分析

本文实例讲述了Python排序搜索基本算法之插入排序。分享给大家供大家参考,具体如下:

插入排序生活中非常常见,打扑克的时候人的本能就在用插入排序:把抽到的一张插入到手上牌的正确位置上。有两种插入排序方法,一种基于比较,另一种基于交换。代码如下:

1.基于比较的插入排序:

# coding:utf-8
def insertionSort(seq):
  length=len(seq)
  for i in range(1,length):
    tmp=seq[i]
    for j in range(i,0,-1):
      if seq[j-1]>tmp:
        seq[j]=seq[j-1]
      else:
        j+=1
        break
    seq[j-1]=tmp
if __name__=='__main__':
  print("我们测试结果:")
  seq=[8,6,4,9,7,3,2,-4,0,-100,99]
  insertionSort(seq)
  print(seq)

运行结果:

2.基于交换的插入排序:

# coding:utf-8
def insertionSort2(seq):
  length=len(seq)
  for i in range(1,length):
    for j in range(i,0,-1):
      if seq[j]<seq[j-1]:
        seq[j],seq[j-1]=seq[j-1],seq[j]
      else:
        break
if __name__=='__main__':
  print("我们测试结果:")
  seq=[3,5,9,8,4,2,1,0,-6,12,-8]
  insertionSort2(seq)
  print(seq)

运行结果:

PS:这里再为大家推荐一款关于排序的演示工具供大家参考:

在线动画演示插入/选择/冒泡/归并/希尔/快速排序算法过程工具:
http://tools.jb51.net/aideddesign/paixu_ys

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • K-近邻算法的python实现代码分享

    k-近邻算法概述: 所谓k-近邻算法KNN就是K-Nearest neighbors Algorithms的简称,它采用测量不同特征值之间的距离方法进行分类 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中. k-近邻算法分析 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用数据范围:数值型和标称型 k-

  • Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个点到其他各顶点的路径--单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, 3:{3:0, 5:5}, 4:{3:4, 4:0, 5:13, 6:15}, 5:{5:0, 6:4}, 6:{6:0}} # 每次找到离源点最近的一个顶

  • Python排序搜索基本算法之选择排序实例分析

    本文实例讲述了Python排序搜索基本算法之选择排序.分享给大家供大家参考,具体如下: 选择排序就是第n次把序列中最小的元素排在第n的位置上,一旦排好就是该元素的绝对位置.代码如下: # coding:utf-8 def selectionSort(seq): length=len(seq) for i in range(length): mini=min(seq[i:]) if seq[i]>mini: j=seq.index(mini,i) seq[i],seq[j]=seq[j],seq[

  • Python数据结构与算法之图的基本实现及迭代器实例详解

    本文实例讲述了Python数据结构与算法之图的基本实现及迭代器.分享给大家供大家参考,具体如下: 这篇文章参考自<复杂性思考>一书的第二章,并给出这一章节里我的习题解答. (这书不到120页纸,要卖50块!!,一开始以为很厚的样子,拿回来一看,尼玛.....代码很少,给点提示,然后让读者自己思考怎么实现) 先定义顶点和边 class Vertex(object): def __init__(self, label=''): self.label = label def __repr__(sel

  • Python使用三种方法实现PCA算法

    主成分分析,即Principal Component Analysis(PCA),是多元统计中的重要内容,也广泛应用于机器学习和其它领域.它的主要作用是对高维数据进行降维.PCA把原先的n个特征用数目更少的k个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的k个特征互不相关.关于PCA的更多介绍,请参考:https://en.wikipedia.org/wiki/Principal_component_analysis. 主成分分析(PCA) vs 多元判别式分析(MD

  • python中Apriori算法实现讲解

    本文主要给大家讲解了Apriori算法的基础知识以及Apriori算法python中的实现过程,以下是所有内容: 1. Apriori算法简介 Apriori算法是挖掘布尔关联规则频繁项集的算法.Apriori算法利用频繁项集性质的先验知识,通过逐层搜索的迭代方法,即将K-项集用于探察(k+1)项集,来穷尽数据集中的所有频繁项集.先找到频繁项集1-项集集合L1, 然后用L1找到频繁2-项集集合L2,接着用L2找L3,知道找不到频繁K-项集,找到每个Lk需要一次数据库扫描.注意:频繁项集的所有非空

  • Python数据结构与算法之二叉树结构定义与遍历方法详解

    本文实例讲述了Python数据结构与算法之二叉树结构定义与遍历方法.分享给大家供大家参考,具体如下: 先序遍历,中序遍历,后序遍历 ,区别在于三条核心语句的位置 层序遍历  采用队列的遍历操作第一次访问根,在访问根的左孩子,接着访问根的有孩子,然后下一层 自左向右一一访问同层的结点 # 先序遍历 # 访问结点,遍历左子树,如果左子树为空,则遍历右子树, # 如果右子树为空,则向上走到一个可以向右走的结点,继续该过程 preorder(t): if t: print t.value preorde

  • Python语言描述KNN算法与Kd树

    最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据.但是,最近邻算法明显是存在缺陷的,比如下面的例子:有一个未知形状(图中绿色的圆点),如何判断它是什么形状? 显然,最近邻算法的缺陷--对噪声数据过于敏感,为了解决这个问题,我们可

  • Python排序搜索基本算法之插入排序实例分析

    本文实例讲述了Python排序搜索基本算法之插入排序.分享给大家供大家参考,具体如下: 插入排序生活中非常常见,打扑克的时候人的本能就在用插入排序:把抽到的一张插入到手上牌的正确位置上.有两种插入排序方法,一种基于比较,另一种基于交换.代码如下: 1.基于比较的插入排序: # coding:utf-8 def insertionSort(seq): length=len(seq) for i in range(1,length): tmp=seq[i] for j in range(i,0,-1

  • Python排序搜索基本算法之归并排序实例分析

    本文实例讲述了Python排序搜索基本算法之归并排序.分享给大家供大家参考,具体如下: 归并排序最令人兴奋的特点是:不论输入是什么样的,它对N个元素的序列排序所用时间与NlogN成正比.代码如下: # coding:utf-8 def mergesort(seq): if len(seq)<=1: return seq mid=int(len(seq)/2) left=mergesort(seq[:mid]) right=mergesort(seq[mid:]) return merge(lef

  • Python排序搜索基本算法之冒泡排序实例分析

    本文实例讲述了Python排序搜索基本算法之冒泡排序.分享给大家供大家参考,具体如下: 冒泡排序和选择排序类似,也是第n次把最小的元素排在第n的位置上,也是该元素的绝对位置,只是冒泡排序的过程中,其他的元素也逐渐向自己最终位置逼近.代码如下: def bubbleSort(seq): length=len(seq) for i in range(length): for j in range(length-1,i,-1): if seq[j-1]>seq[j]: seq[j-1],seq[j]=

  • Python排序搜索基本算法之堆排序实例详解

    本文实例讲述了Python排序搜索基本算法之堆排序.分享给大家供大家参考,具体如下: 堆是一种完全二叉树,堆排序是一种树形选择排序,利用了大顶堆堆顶元素最大的特点,不断取出最大元素,并调整使剩下的元素还是大顶堆,依次取出最大元素就是排好序的列表.举例如下,把序列[26,5,77,1,61,11,59,15,48,19]排序,如下: 基于堆的优先队列算法代码如下: def fixUp(a): #在堆尾加入新元素,fixUp恢复堆的条件 k=len(a)-1 while k>1 and a[k//2

  • Python排序搜索基本算法之希尔排序实例分析

    本文实例讲述了Python排序搜索基本算法之希尔排序.分享给大家供大家参考,具体如下: 希尔排序是插入排序的扩展,通过允许非相邻的元素进行交换来提高执行效率.希尔排序最关键的是选择步长,本程序选用Knuth在1969年提出的步长序列:1 4 13 40 121 364 1093 3280 ...后一个元素是前一个元素*3+1,非常方便选取,而且效率还不错.代码如下: #-*- coding: UTF-8 -*- def shellSort(seq): length=len(seq) inc=0

  • python中scrapy处理项目数据的实例分析

    在我们处理完数据后,习惯把它放在原有的位置,但是这样也会出现一定的隐患.如果因为新数据的加入或者其他种种原因,当我们再次想要启用这个文件的时候,小伙伴们就会开始着急却怎么也翻不出来,似乎也没有其他更好的搜集办法,而重新进行数据整理显然是不现实的.下面我们就一起看看python爬虫中scrapy处理项目数据的方法吧. 1.拉取项目 $ git clone https://github.com/jonbakerfish/TweetScraper.git $ cd TweetScraper/ $ pi

  • python爬虫用scrapy获取影片的实例分析

    我们平时生活的娱乐中,看电影是大部分小伙伴都喜欢的事情.周围的人总会有意无意的在谈论,有什么影片上映,好不好看之类的话题,没事的时候谈论电影是非常不错的话题.那么,一些好看的影片如果不去电影院的话,在其他地方看都会有大大小小的限制,今天小编就教大家用python中的scrapy获取影片的办法吧. 1. 创建项目 运行命令: scrapy startproject myfrist(your_project_name) 文件说明: 名称 | 作用 --|-- scrapy.cfg | 项目的配置信息

  • python爬取抖音视频的实例分析

    现在抖音的火爆程度,大家都是有目共睹的吧,之前小编在网络上发现好玩的事情,就是去爬取一些网站,因此,也考虑能否进行抖音上的破案去,在实际操作以后,真的实现出来了,利用自动化工具,就可以轻松实现了,后有小伙伴提出把appium去掉瘦身之后也是可以实现的,那么看下详细操作内容吧. 1.mitmproxy/mitmdump抓包 import requests path = 'D:/video/' num = 1788 def response(flow): global num target_urls

  • python中使用asyncio实现异步IO实例分析

    1.说明 Python实现异步IO非常简单,asyncio是Python 3.4版本引入的标准库,直接内置了对异步IO的支持. asyncio的编程模型就是一个消息循环.我们从asyncio模块中直接获取一个EventLoop的引用,然后把需要执行的协程扔到EventLoop中执行,就实现了异步IO. 2.实例 import asyncio @asyncio.coroutine def wget(host): print('wget %s...' % host) connect = asynci

随机推荐