Python Image模块基本图像处理操作小结
本文实例讲述了Python Image模块基本图像处理操作。分享给大家供大家参考,具体如下:
Python 里面最常用的图像操作库是Image library(PIL),功能上,虽然还不能跟Matlab比较,但是还是比较强大的,废话补多少,写点记录笔记。
1. 首先需要导入需要的图像库:
import Image
2. 读取一张图片:
im=Image.open('/home/Picture/test.jpg')
3. 显示一张图片:
im.show()
4. 保存图片:
im.save("save.gif","GIF") #保存图像为gif格式
5. 创建新图片:
Image.new(mode,size) Image.new(mode,size,color)
栗子:
newImg = Image.new("RGBA",(640,480),(0,255,0)) newImg.save("newImg.png","PNG")
6.两张图片相加:
Image.blend(img1,img2,alpha) # 这里alpha表示img1和img2的比例参数
7. 点操作:
im.point(function) #,这个function接受一个参数,且对图片中的每一个点执行这个函数
比如:
out=im.point(lambdai:i*1.5)#对每个点进行50%的加强
8. 查看图像信息:
im.format
, im.size
, im.mode
9. 图片裁剪:
box=(100,100,500,500) #设置要裁剪的区域 region=im.crop(box) #此时,region是一个新的图像对象。
10. 图像黏贴(合并)
im.paste(region,box)#粘贴box大小的region到原先的图片对象中。
11. 通道分离:
r,g,b=im.split()#分割成三个通道,此时r,g,b分别为三个图像对象。
12. 通道合并:
im=Image.merge("RGB",(b,g,r))#将b,r两个通道进行翻转。
13. 改变图像的大小:
out=img.resize((128,128))#resize成128*128像素大小
14. 旋转图像:
out=img.rotate(45) #逆时针旋转45度
有更方便的:
region = region.transpose(Image.ROTATE_180)
15. 图像转换:
out = im.transpose(Image.FLIP_LEFT_RIGHT) #左右对换。 out = im.transpose(Image.FLIP_TOP_BOTTOM) #上下对换
16. 图像类型转换:
im=im.convert("RGBA")
17. 获取某个像素位置的值:
im.getpixel((4,4))
18. 写某个像素位置的值:
img.putpixel((4,4),(255,0,0))
更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
相关推荐
-
Python OpenCV处理图像之图像像素点操作
本文实例为大家分享了Python OpenCV图像像素点操作的具体代码,供大家参考,具体内容如下 0x01. 像素 有两种直接操作图片像素点的方法: 第一种办法就是将一张图片看成一个多维的list,例如对于一张图片im,想要操作第四行第四列的像素点就直接 im[3,3] 就可以获取到这个点的RGB值. 第二种就是使用 OpenCV 提供的 Get1D. Get2D 等函数. 推荐使用第一种办法吧,毕竟简单. 0x02. 获取行和列像素 有一下四个函数: cv.GetCol(im, 0): 返回第
-
使用Python给头像戴上圣诞帽的图像操作过程解析
前言 随着圣诞的到来,大家纷纷@官方微信给自己的头像加上一顶圣诞帽.当然这种事情用很多P图软件都可以做到.但是作为一个学习图像处理的技术人,还是觉得我们有必要写一个程序来做这件事情.而且这完全可以作为一个练手的小项目,工作量不大,而且很有意思. 用到的工具 OpenCV(毕竟我们主要的内容就是OpenCV...) dlib(dlib的人脸检测比OpenCV更好用,而且dlib有OpenCV没有的关键点检测.) 用到的语言为Python.但是完全可以改成C++版本,时间有限,就不写了.有兴趣的小伙
-
Python图像滤波处理操作示例【基于ImageFilter类】
本文实例讲述了Python图像滤波处理操作.分享给大家供大家参考,具体如下: 在图像处理中,经常需要对图像进行平滑.锐化.边界增强等滤波处理.在使用PIL图像处理库时,我们通过Image类中的成员函数filter()来调用滤波函数对图像进行滤波,而滤波函数则通过ImageFilter类来定义的. 下面先直接看一个样例: #-*- coding: UTF-8 -*- from PIL import Image from PIL import ImageFilter def image_filter
-
Python给图像添加噪声具体操作
在我们进行图像数据实验的时候往往需要给图像添加相应的噪声,那么该怎么添加呢,下面给出具体得操作方法. 1.打开Python的shell界面,界面如图所示: 2.载入skimage工具包和其他的工具包,如图所示,代码如下: from skimage import io,data import numpy as np 3.采用以下指令读取图片: img=data.coffee() 4.采用以下指令填产生噪声: rows,cols,dims=img.shape for i in range(5000)
-
Python用Pillow(PIL)进行简单的图像操作方法
Python用Pillow(PIL)进行简单的图像操作方法 颜色与RGBA值 计算机通常将图像表示为RGB值,或者再加上alpha值(通透度,透明度),称为RGBA值.在Pillow中,RGBA的值表示为由4个整数组成的元组,分别是R.G.B.A.整数的范围0~255.RGB全0就可以表示黑色,全255代表黑色.可以猜测(255, 0, 0, 255)代表红色,因为R分量最大,G.B分量为0,所以呈现出来是红色.但是当alpha值为0时,无论是什么颜色,该颜色都不可见,可以理解为透明. from
-
Python图像灰度变换及图像数组操作
使用python以及numpy通过直接操作图像数组完成一系列基本的图像处理 numpy简介: NumPy是一个非常有名的 Python 科学计算工具包,其中包含了大量有用的工具,比如数组对象(用来表示向量.矩阵.图像等)以及线性代数函数. 数组对象可以实现数组中重要的操作,比如矩阵乘积.转置.解方程系统.向量乘积和归一化.这为图像变形.对变化进行建模.图像分类.图像聚类等提供了基础. 在上一篇python基本图像操作中,当载入图像时,通过调用 array() 方法将图像转换成NumPy的数组对象
-
Python图像的增强处理操作示例【基于ImageEnhance类】
本文实例讲述了Python图像的增强处理操作.分享给大家供大家参考,具体如下: python中PIL模块中有一个叫做ImageEnhance的类,该类专门用于图像的增强处理,不仅可以增强(或减弱)图像的亮度.对比度.色度,还可以用于增强图像的锐度. 具体见下面的例子: #-*- coding: UTF-8 -*- from PIL import Image from PIL import ImageEnhance #原始图像 image = Image.open('lena.jpg') imag
-
python简单图片操作:打开\显示\保存图像方法介绍
一提到数字图像处理,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因此,我们这里使用python这个脚本语言来进行数字图像处理. 要使用python,必须先安装python,一般是2.7版本以上,不管是在windows系统,还是linux系统,安装都是非常简单的. 要使用python进行各种开发,就必须安装对应的库.这和matlab非常相似,只是matlab里面叫工具箱
-
Python Image模块基本图像处理操作小结
本文实例讲述了Python Image模块基本图像处理操作.分享给大家供大家参考,具体如下: Python 里面最常用的图像操作库是Image library(PIL),功能上,虽然还不能跟Matlab比较,但是还是比较强大的,废话补多少,写点记录笔记. 1. 首先需要导入需要的图像库: import Image 2. 读取一张图片: im=Image.open('/home/Picture/test.jpg') 3. 显示一张图片: im.show() 4. 保存图片: im.save("sa
-
Python多线程模块Threading用法示例小结
本文实例讲述了Python多线程模块Threading用法.分享给大家供大家参考,具体如下: 步入正题前,先准备下基本知识,线程与进程的概念. 相信作为一个测试人员,如果从理论概念上来说其两者的概念或者区别,估计只会一脸蒙蔽,这里就举个例子来说明下其中的相关概念. 平安夜刚过,你是吃到了苹果还是香蕉呢...其实当你用手去接下对方苹果的时候,你的手臂就可以比喻成进程,你的五个手指就可以比喻成线程,所以很明显,线程可以说是进程的细化,没有进程就不会有线程. 这里还是说下必要的概念: 进程 是操
-
Python中的十大图像处理工具(小结)
Python之成为图像处理任务的最佳选择,是因为这一科学编程语言日益普及,并且其自身免费提供许多最先进的图像处理工具.本文主要介绍了一些简单易懂最常用的Python图像处理库. 当今世界充满了各种数据,而图像是其中高的重要组成部分.然而,若想其有所应用,我们需要对这些图像进行处理.图像处理是分析和操纵数字图像的过程,旨在提高其质量或从中提取一些信息,然后将其用于某些方面. 图像处理中的常见任务包括显示图像,基本操作(如裁剪.翻转.旋转等),图像分割,分类和特征提取,图像恢复和图像识别等. Pyt
-
Python中re模块的元字符使用小结
目录 类别1:匹配单个字符的元字符 方括号( [] ) 字符集 点 ( . ) 通配符 \w 和 \W 单词字符匹配 \d 和 \D 字符十进制数字匹配 \s 和 \S 字符空格匹配 混合使用 \w, \W, \d, \D, \s, 和\S 类别2:转义元字符 反斜杠 ( \ ) 转义元字符 类别3:锚点 $ 和\Z 字符串的结尾匹配项 \b 和 \B 单词匹配 类别4:量词 * 匹配前面的子表达式零次或多次 + 匹配前面的子表达式一次或多次 ? 匹配前面的子表达式零次或一次 .*?.+?.??
-
Python+OpenCV实现基本的图像处理操作
目录 模块的安装 图片的各种操作 读取图像 展示图像 图片保存 图片的各种属性 图像的基本操作 今天小编来和大家分享一下Python在图像处理当中的具体应用,那既然是图像处理,那必然要提到opencv模块了,该模块支持与计算机视觉和机器学习相关的众多算法,并且应用领域正在日益扩展,大致有以下几种领域 物体识别:通过视觉以及内部存储来进行物体的判断 图像分割 人脸识别 汽车安全驾驶 人机交互 等等 当然这次小编并不打算将这么高深的内容,今天就从最基本的opencv模块在图像的基本操作上说起 模块的
-
Python的SQLalchemy模块连接与操作MySQL的基础示例
一.SQLalchemy简介 SQLAlchemy是一个开源的SQL工具包,基本Python编程语言的MIT许可证而发布的对象关系映射器.SQLAlchemy提供了"一个熟知的企业级全套持久性模式,使用ORM等独立SQLAlchemy的一个优势在于其允许开发人员首先考虑数据模型,并能决定稍后可视化数据的方式. 二.SQLAlchempy的安装 首先需安装mysql,这里就不再多说了..... 然后,下载SQLAlchemy(http://www.sqlalchemy.org/download.h
-
Python tkinter模块弹出窗口及传值回到主窗口操作详解
本文实例讲述了Python tkinter模块弹出窗口及传值回到主窗口操作.分享给大家供大家参考,具体如下: 有些时候,我们需要使用弹出窗口,对程序的运行参数进行设置.有两种选择 一.标准窗口 如果只对一个参数进行设置(或者说从弹出窗口取回一个值),那么可以使用simpledialog,导入方法: from tkinter.simpledialog import askstring, askinteger, askfloat 完整例子 import tkinter as tk from tkin
-
Python数据报表之Excel操作模块用法分析
本文实例讲述了Python数据报表之Excel操作模块用法.分享给大家供大家参考,具体如下: 一 点睛 Excel是当今最流行的电子表格处理软件,支持丰富的计算函数及图表,在系统运营方面广泛用于运营数据报表,比如业务质量.资源利用.安全扫描等报表,同时也是应用系统常见的文件导出格式,以便数据使用人员做进一步加工处理.利用Python操作Excel的模块XlsxWriter(https://xlsxwriter.readthedocs.org),可以操作多个工作表的文字.数字.公式.图表等. 二
-
Python实现监控键盘鼠标操作示例【基于pyHook与pythoncom模块】
本文实例讲述了Python实现监控键盘鼠标操作.分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- import pythoncom import pyHook import time def onMouseEvent(event): "处理鼠标事件" fobj.writelines('-' * 20 + 'MouseEvent Begin' + '-' * 20 + '\n') fobj.writelines("Current Time:%s\
-
Python使用random模块生成随机数操作实例详解
本文实例讲述了Python使用random模块生成随机数操作.分享给大家供大家参考,具体如下: 今天在用Python编写一个小程序时,要用到随机数,于是就在网上查了一下关于Python生成各种随机数的方法,现将其总结如下: 此处,利用Python中的random模块生成随机数.因此首先必须导入该模块:import random 一. 随机产生一个元素 import random #生成一个0到1的随机浮点数: 0 <= n < 1.0 print(random.random()) >&g
随机推荐
- java中初始化MediaRecorder的实现方法
- flex利用webservice上传照片实现代码
- 通过Ajax使用FormData对象无刷新上传文件方法
- jquery点击缩略图切换视频播放特效代码分享
- 手机端页面rem宽度自适应脚本
- Java中String性能优化
- Openstack 启动instance 'hvm'错误问题解决办法
- JavaScript高级程序设计(第3版)学习笔记10 再访js对象
- 探索PowerShell(五) PowerShell基础知识
- 记录滚动条位置(使用userdate)
- 视窗操作系统密码体系的弱点及对策(图)
- Android自定义View实现游戏摇杆键盘的方法示例
- maven如何在tomcat8中实现自动部署
- Java编程读写锁详解
- python将一组数分成每3个一组的实例
- android实现年龄段选择器
- layui框架table 数据表格的方法级渲染详解
- Go 并发控制context实现原理剖析(小结)
- OPENCV去除小连通区域,去除孔洞的实例讲解
- Android N获取外置SD卡或挂载U盘路径的方法