深入理解线程安全与Singleton

线程安全是个非常棘手的问题。即使你合理的使用了锁(lock),依然可能不会产生预期的效果。
让我们来看看貌似合理的代码


代码如下:

X=0;
Thread 1                   Thread2
lock();  lock();
x++;    x++;
unlock();  unlock();

你会认为执行完这两个线程之后,X的一定值等于2?没错,因为lock()和unlock()的保护,x++的执行并不会被打断。(为什么++操作会被多线程给扰乱呢?原因就在于++操作在被编译成汇编之后对应到了多条汇编代码。)但是,编译器却可能因为自作聪明的优化,把x放到register里面(因为寄存器速度快嘛),也就是说当Thread1执行完x++之后,被Thread2打断,但是1这个值只保存到了寄存器x里,没有写入内存中的x变量里。随后Thread2执行完成后,内存中x的值等于1,此时,Thread1再执行完,内存中的x又被写入为1.
原来都是编译器倒得鬼!

再看一个例子


代码如下:

x=y=0;
Thread1                        Thread2
y=1;                                x=1;
r1=x;                               r2=y;

当你拍胸脯向崇拜你的MM保证说:r1或者r2至少有一个为1的时候,可惜编译器又再一次的站到了你的对立面。

原因是早在十几年前还是几十年前,编译器就有了这么一种优化机制,为了提高效率而交换指令的序列。所以上面的代码到了可能变成了这样:


代码如下:

x=y=0;
Thread1                        Thread2
r1=x;                             r2=y;
y=1;                              x=1;

知道你错了吧~还好我们还有volatile:
1. 阻止编译器为了提高速度将变量缓存寄存到寄存器内而不写回内存。
2. 阻止编译器调整操作指令序列

哈哈,可惜道高一尺,魔高一丈。CPU动态调度的功能,CPU可以交换指令序列。volatile帮不了你,但宙斯大帝为我们发明了:barrier指令(这是一个CPU的指令)能够帮组我们阻止CPU调整操作指令序列。
好想目前我们解决了现场安全的问题了。

有一个著名的与换序有关的问题来至于Singleton模式的double-check。代码大概是这样子的:


代码如下:

volatile Singleton* Singleton::_instance = 0;

代码如下:

static Singleton& Instance() {
      if (0 == _instance) {
          Lock lock(_mutex);
          if (0 == _instance) {
              _instance = new Singleton();
              atexit(Destroy);
          }
      }
      return *_instance;
 }

简单的说,编译器为了效率可能会重排指令的执行顺序(compiler-based reorderings)。
看这一行代码:
_instance = new Singleton();

在编译器未优化的情况下顺序如下:
1.new operator分配适当的内存;
2.在分配的内存上构造Singleton对象;
3.内存地址赋值给_instance。

但是当编译器优化后执行顺序可能如下:
1.new operator分配适当的内存;
2.内存地址赋值给_instance;
3.在分配的内存上构造Singleton对象。

当编译器优化后,如果线程一执行到2后被挂起。线程二开始执行并发现0 == _instance为false,于是直接return,而这时Singleton对象可能还未构造完成,后果...

(0)

相关推荐

  • 五种单件模式之Singleton的实现方法详解

    最基本的实现方式如下: 复制代码 代码如下: package singletonpattern;public class Singleton1 { private static Singleton1 uniqueInstance; private Singleton1() { } public static Singleton1 getInstance() {  if (uniqueInstance == null) {   uniqueInstance = new Singleton1(); 

  • C#多线程Singleton(单件)模式模板

    复制代码 代码如下: private static volatile T _instance = null; private static object objLock = new Object(); private T() { } public static T Instance { get { if (_instance == null) { lock (objLock) { if (_instance == null) { _instance = new T(); } } } return

  • 基于静态Singleton模式的使用介绍

    什么是静态单例模式? 静态单例模式(Static Singleton Pattern)是我在实践中总结的模式,主要解决的问题是在预先知道某依赖项为单例应用时,通过静态缓存该依赖项来提供访问.当然,解决该问题的办法有很多,这只是其中一个. 实现细节 复制代码 代码如下: /// <summary>  /// 静态单例  /// </summary>  /// <typeparam name="TClass">单例类型</typeparam>

  • .NET c# 单体模式(Singleton)

    单体模式(Singleton)是经常为了保证应用程序操作某一全局对象,让其保持一致而产生的对象,例如对文件的读写操作的锁定,数据库操作的时候的事务回滚,还有任务管理器操作,都是一单体模式读取的.   创建一个单体模式类,必须符合三个条件:   1:私有构造函数(防止其他对象创建实例):   2:一个单体类型的私有变量:   3:静态全局获取接口 下面我写一个类,为了看是不是单体,就加了一个计数器,如果是同一个类,那么这个类的计数每次调用以后就应该自动加一,而不是重新建对象归零: .NET c# 

  • 深入理解线程安全与Singleton

    线程安全是个非常棘手的问题.即使你合理的使用了锁(lock),依然可能不会产生预期的效果.让我们来看看貌似合理的代码 复制代码 代码如下: X=0;Thread 1                   Thread2lock();  lock();x++;    x++;unlock();  unlock(); 你会认为执行完这两个线程之后,X的一定值等于2?没错,因为lock()和unlock()的保护,x++的执行并不会被打断.(为什么++操作会被多线程给扰乱呢?原因就在于++操作在被编译成

  • 50 道Java 线程面试题(经典)

    下面是 Java 线程相关的热门面试题,你可以用它来好好准备面试. 1) 什么是线程? 线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位.程序员可以通过它进行多处理器编程,你可以使用多线程对运算密集型任务提速.比如,如果一个线程完成一个任务要 100 毫秒,那么用十个线程完成改任务只需 10 毫秒.Java 在语言层面对多线程提供了卓越的支持,它也是一个很好的卖点.欲了解更多详细信息请点击这里. 2) 线程和进程有什么区别? 线程是进程的子集,一个进程可以有很

  • Java线程安全基础概念解析

    Java线程安全初步了解.JAVA线程安全从总体上来说,是指Java对象在多线程运行环境下的一种特性,表现为常规(区别于特殊调用情况)情况下每次调用都能得到正确的逻辑结果.从本质上来说,将对象的方法行为加上了同步控制逻辑,而调用者无须做其他额外的同步控制就可以安全放心的使用对象. 1.线程安全的定义 当多个线程访问一个对象时,如果不用考虑这些线程在运行时环境下的调度和交替执行,也不需要进行额外的同步,或者在调用方进行任何其他的协调操作,调用这个对象的行为都可以获得正确的结果,那这个对象就是线程安

  • Java 线程池详解及实例代码

    线程池的技术背景 在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或者其它更多资源.在Java中更是如此,虚拟机将试图跟踪每一个对象,以便能够在对象销毁后进行垃圾回收. 所以提高服务程序效率的一个手段就是尽可能减少创建和销毁对象的次数,特别是一些很耗资源的对象创建和销毁.如何利用已有对象来服务就是一个需要解决的关键问题,其实这就是一些"池化资源"技术产生的原因. 例如Android中常见到的很多通用组件一般都离不开"池"的概念,如各种图片

  • 创建并运行一个java线程方法介绍

    要解释线程,就必须明白什么是进程. 什么是进程呢? 进程是指运行中的应用程序,每个进程都有自己独立的地址空间(内存空间),比如用户点击桌面的IE浏览器,就启动了一个进程,操作系统就会为该进程分配独立的地址空间.当用户再次点击左面的IE浏览器,又启动了一个进程,操作系统将为新的进程分配新的独立的地址空间.目前操作系统都支持多进程. 要点:用户每启动一个进程,操作系统就会为该进程分配一个独立的内存空间. 线程--概念 在明白进程后,就比较容易理解线程的概念. 什么是线程呢? 是进程中的一个实体,是被

  • Java线程的生命周期的详解

    Java线程的生命周期的详解 对于多线程编程而言,理解线程的生命周期非常重要,本文就针对这一点进行讲解. 一.线程的状态 线程的存在有几种不同的状态,如下: New状态 Ready状态 Running状态 Dead状态 Non Runnable状态 1.New状态 New状态是线程已经被创建,但是还未开始运行的状态.此状态通过调用线程的start()方法可让线程运行. 2.Runnable状态 Runnable状态可称为准备运行状态,也可称为队列,此状态通过调用线程的start()方法可让线程运

  • Thread线程的基础知识及常见疑惑点总结

    引言 相信各位道友在平时工作中已经很少直接用到Thread线程类了,现在大多是通过线程池或者一些多线程框架来操作线程任务,但我觉得还是有必要了解清楚Thread线程类中各种方法的含义,了解了底层才能更好的理解框架.应用框架.下面我就将Thread线程的相关基础点总结一二,以供观瞻. 正文 1.Thread线程的状态 根据<深入理解Java虚拟机>一书的讲述,Java语言定义了五种线程状态,分别为:创建(new).运行(Runnable).等待(waiting).阻塞(blocked).结束(t

  • python使用Thread的setDaemon启动后台线程教程

    多线程编程当中, 线程的存在形态比较抽象. 通过前台线程\后台线程, 可以有效理解线程运行顺序.(复杂的多线程程序可以通过设置线程优先级实现) 后台线程与前台线程的直接区别是, 1)setDaemon(True): 当主线程退出时,后台线程随机退出; 2)setDaemon(False)(默认情况): 当主线程退出时,若前台线程还未结束,则等待所有线程结束,相当于在程序末尾加入join(). 实例: 例子描述:主线程调用giveures给出字符串s的md5摘要,同时在giveures当中启动一个

  • C#设计模式之Singleton模式

    前言 Singleton是二十三个设计模式中比较重要也比较经常使用的模式.但是这个模式虽然简单,实现起来也会有一些小坑,让我们一起来看看吧! 实现思路 首先我们看看这个设计模式的UML类图. 很清晰的可以看到,有三点是需要我们在实现这个模式的时候注意的地方. 私有化的构造器 全局唯一的静态实例 能够返回全局唯一静态实例的静态方法 其中,私有化构造器是防止外部用户创建新的实例而静态方法用于返回全局唯一的静态实例供用户使用.原理清楚了,接下来我们看看一些典型的实现方式和其中的暗坑. 实现方法 最简单

  • java 优雅关闭线程池的方案

    我们经常在项目中使用的线程池,但是是否关心过线程池的关闭呢,可能很多时候直接再项目中直接创建线程池让它一直运行当任务执行结束不在需要了也不去关闭,这其实是存在非常大的风险的,大量的线程常驻在后台对系统资源的占用是巨大的 ,甚至引发异常.所以在我们平时使用线程池时需要注意优雅的关闭,这样可以保证资源的管控. 在 Java 中和关闭线程池相关的方法主要有如下: void shutdown() List<Runnable> shutDownNow boolean awaitTermination b

随机推荐