python实现k-means聚类算法

k-means聚类算法

k-means是发现给定数据集的k个簇的算法,也就是将数据集聚合为k类的算法。

算法过程如下:
1)从N个文档随机选取K个文档作为质心
2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类,我们一般取欧几里得距离
3)重新计算已经得到的各个类的质心
4)迭代步骤(2)、(3)直至新的质心与原质心相等或迭代次数大于指定阈值,算法结束

算法实现

随机初始化k个质心,用dict保存质心的值以及被聚类到该簇中的所有data。

def initCent(dataSet , k):
 N = shape(dataSet)[1]
 cents = {}
 randIndex=[]
 #随机生成k个不重复的索引
 for i in range(k):
 rand = random.randint(0,N)
 while rand in randIndex:
  rand = random.randint(0, N)
 randIndex.append(rand)
 #按索引取dataSet中的data作为质心
 for i in range(k):
 templist = []
 templist.append(dataSet[randIndex[i]])
 templist.append([dataSet[randIndex[i]]])
 cents[i] = templist
 return cents

对dataSet中的所有数据进行一次聚类。返回值cents为dict类型的数据,int类型的key,list类型的value。其中cents[i][0]为质心位置,cents[i][1]为存储该簇中所有data的列表。

#计算两个向量的欧氏距离
def calDist(X1 , X2):
 sum = 0
 for x1 , x2 in zip(X1 , X2):
 sum += (x1 - x2) ** 2
 return sum ** 0.5

#聚类
def doKmeans(dataSet , k , cents):
 #清空上一次迭代后的簇中元素,只记录质心
 for i in range(k):
 cents[i][1] = []
 for data in dataSet:
 no = 0#初始化簇标号
 minDist = sys.maxint#初始化data与k个质心的最短距离
 for i in range(k):
  dist = calDist(data , cents[i][0])
  if dist < minDist:
  minDist = dist
  no = i
 #找到距离最近的质心
 cents[no][1].append(data)
 #更新质心
 for i in range(k):
 for j in range(shape(dataSet)[0]):
  cents[i][0] = mean(cents[i][1],axis=0).tolist()
 return cents

k-means主方法

#判断两次聚类的结果是否相同
def isEqual(old , new):
 for i in range(len(old)):
 if(old[i] != new[i][0]):
  return 0
 return 1

#主方法
def kmeans_main(dataSet,k):
 cents = initCent(dataSet, k)
 for x in range(1000):
 oldcents = []
 #拷贝上一次迭代的结果
 for i in cents.keys():
  oldcents.append(cents[i][0])
 newcents = doKmeans(dataSet, k , cents)
 #若相邻两次迭代结果相同,算法结束
 if isEqual(oldcents , newcents)>0:
  break
 cents = newcents
 return cents

结果测试

数据集(虚构)

2 3 2.54
2 1 0.72
3 5 3.66
4 3 1.71
3.11 5.29 4.13
4.15 2 3.1
3.12 3.33 3.72
1.49 5 2.6
3 5 2.88
3.9 1.78 2.56
-2 3 5
3 1 0.4
-2 1 2.2
-3 0 1.7
-4 1 2
8 -1 0
2 3.2 7.1
1 3 5
2 4 3
0.1 2 5.4
2 0 5.54
2 1 1.72
3 5 2.66
1 8 1.71
5.11 1.29 4.13
7.15 2 7.1
1.12 5.33 4.72
6.49 4 3.6
4 8 6.88
1.9 5.78 6.56
-2 -3 2.5
1 -1 2.4
-2 1 3.2
-1 0 5.7
-2 3 2
1 -1 4
3 4.2 6.1
5 2 5
3 5.7 13
0.9 2.9 1.4

画图方法

def draw(cents):
 color = [ 'y', 'g', 'b']
 X = []
 Y = []
 Z = []
 fig = plt.figure()
 ax = Axes3D(fig)
 for i in cents.keys():
 X.append(cents[i][0][0])
 Y.append(cents[i][0][1])
 Z.append(cents[i][0][2])
 ax.scatter(X, Y, Z,alpha=0.4,marker='o',color='r', label=str(i))
 for i in cents.keys():
 X = []
 Y = []
 Z = []
 data = cents[i][1]
 for vec in data:
  X.append(vec[0])
  Y.append(vec[1])
  Z.append(vec[2])
 ax.scatter(X, Y, Z, alpha=0.4,marker='o', color=color[i], label=str(i),)
 plt.show()

测试及结果展示(红点表示质心)

dataSet = loadDataSet("dataSet.txt")
cents = kmeans_main(dataSet , 3)
draw(cents)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • python kmeans聚类简单介绍和实现代码
  • Python实现k-means算法
  • Python机器学习算法之k均值聚类(k-means)
  • python中kmeans聚类实现代码
  • Python机器学习之K-Means聚类实现详解
  • Python实现Kmeans聚类算法
  • python实现kMeans算法
  • 详解K-means算法在Python中的实现
  • python中学习K-Means和图片压缩
  • Python KMeans聚类问题分析
(0)

相关推荐

  • Python实现Kmeans聚类算法

    本节内容:本节内容是根据上学期所上的模式识别课程的作业整理而来,第一道题目是Kmeans聚类算法,数据集是Iris(鸢尾花的数据集),分类数k是3,数据维数是4. 关于聚类 聚类算法是这样的一种算法:给定样本数据Sample,要求将样本Sample中相似的数据聚到一类.有了这个认识之后,就应该了解了聚类算法要干什么了吧.说白了,就是归类.     首先,我们需要考虑的是,如何衡量数据之间的相似程度?比如说,有一群说不同语言的人,我们一般是根据他们的方言来聚类的(当然,你也可以指定以身高来聚类).

  • python中kmeans聚类实现代码

    k-means算法思想较简单,说的通俗易懂点就是物以类聚,花了一点时间在python中实现k-means算法,k-means算法有本身的缺点,比如说k初始位置的选择,针对这个有不少人提出k-means++算法进行改进:另外一种是要对k大小的选择也没有很完善的理论,针对这个比较经典的理论是轮廓系数,二分聚类的算法确定k的大小,在最后还写了二分聚类算法的实现,代码主要参考机器学习实战那本书: #encoding:utf-8 ''''' Created on 2015年9月21日 @author: Z

  • python实现kMeans算法

    聚类是一种无监督的学习,将相似的对象放到同一簇中,有点像是全自动分类,簇内的对象越相似,簇间的对象差别越大,则聚类效果越好. 1.k均值聚类算法 k均值聚类将数据分为k个簇,每个簇通过其质心,即簇中所有点的中心来描述.首先随机确定k个初始点作为质心,然后将数据集分配到距离最近的簇中.然后将每个簇的质心更新为所有数据集的平均值.然后再进行第二次划分数据集,直到聚类结果不再变化为止. 伪代码为 随机创建k个簇质心 当任意一个点的簇分配发生改变时:     对数据集中的每个数据点:         对

  • 详解K-means算法在Python中的实现

    K-means算法简介 K-means是机器学习中一个比较常用的算法,属于无监督学习算法,其常被用于数据的聚类,只需为它指定簇的数量即可自动将数据聚合到多类中,相同簇中的数据相似度较高,不同簇中数据相似度较低. K-MEANS算法是输入聚类个数k,以及包含 n个数据对象的数据库,输出满足方差最小标准k个聚类的一种算法.k-means 算法接受输入量 k :然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高:而不同聚类中的对象相似度较小. 核心思想 通过迭代寻找

  • Python实现k-means算法

    本文实例为大家分享了Python实现k-means算法的具体代码,供大家参考,具体内容如下 这也是周志华<机器学习>的习题9.4. 数据集是西瓜数据集4.0,如下 编号,密度,含糖率 1,0.697,0.46 2,0.774,0.376 3,0.634,0.264 4,0.608,0.318 5,0.556,0.215 6,0.403,0.237 7,0.481,0.149 8,0.437,0.211 9,0.666,0.091 10,0.243,0.267 11,0.245,0.057 12

  • python中学习K-Means和图片压缩

    大家在学习python中,经常会使用到K-Means和图片压缩的,我们在此给大家分享一下K-Means和图片压缩的方法和原理,喜欢的朋友收藏一下吧. 通俗的介绍这种压缩方式,就是将原来很多的颜色用少量的颜色去表示,这样就可以减小图片大小了.下面首先我先介绍下K-Means,当你了解了K-Means那么你也很容易的可以去理解图片压缩了,最后附上图片压缩的核心代码. K-Means的核心思想 k-means的核心算法也就上面寥寥几句,下面将分三个部分来讲解:初始化簇中心.簇分配.簇中心移动. 初始化

  • Python机器学习算法之k均值聚类(k-means)

    一开始的目的是学习十大挖掘算法(机器学习算法),并用编码实现一遍,但越往后学习,越往后实现编码,越发现自己的编码水平低下,学习能力低.这一个k-means算法用Python实现竟用了三天时间,可见编码水平之低,而且在编码的过程中看了别人的编码,才发现自己对numpy认识和运用的不足,在自己的代码中有很多可以优化的地方,比如求均值的地方可以用mean直接对数组求均值,再比如去最小值的下标,我用的是argsort排序再取列表第一个,但是有argmin可以直接用啊.下面的代码中这些可以优化的并没有改,

  • Python机器学习之K-Means聚类实现详解

    本文为大家分享了Python机器学习之K-Means聚类的实现代码,供大家参考,具体内容如下 1.K-Means聚类原理 K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大.其基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果.各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开. 算法大致流程为:(1)随机选取k个点作为种子点(这k个点不一定属于数据集)

  • Python KMeans聚类问题分析

    今天用python实现了一下简单的聚类分析,顺便熟悉了numpy数组操作和绘图的一些技巧,在这里做个记录. from pylab import * from sklearn.cluster import KMeans ## 利用numpy.append()函数实现matlab多维数组合并的效果,axis 参数值为 0 时是 y 轴方向合并,参数值为 1 时是 x 轴方向合并,分别对应matlab [A ; B] 和 [A , B]的效果 #创建5个随机的数据集 x1=append(randn(5

  • python kmeans聚类简单介绍和实现代码

    一.k均值聚类的简单介绍 假设样本分为c类,每个类均存在一个中心点,通过随机生成c个中心点进行迭代,计算每个样本点到类中心的距离(可以自定义.常用的是欧式距离) 将该样本点归入到最短距离所在的类,重新计算聚类中心,进行下次的重新划分样本,最终类中心不改变时,聚类完成 二.伪代码   三.python代码实现   #!/usr/bin/env python # coding=utf-8 import numpy as np import random import matplotlib.pyplo

随机推荐