TensorFlow实现创建分类器

本文实例为大家分享了TensorFlow实现创建分类器的具体代码,供大家参考,具体内容如下

创建一个iris数据集的分类器。

加载样本数据集,实现一个简单的二值分类器来预测一朵花是否为山鸢尾。iris数据集有三类花,但这里仅预测是否是山鸢尾。导入iris数据集和工具库,相应地对原数据集进行转换。

# Combining Everything Together
#----------------------------------
# This file will perform binary classification on the
# iris dataset. We will only predict if a flower is
# I.setosa or not.
#
# We will create a simple binary classifier by creating a line
# and running everything through a sigmoid to get a binary predictor.
# The two features we will use are pedal length and pedal width.
#
# We will use batch training, but this can be easily
# adapted to stochastic training.

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()

# 导入iris数据集
# 根据目标数据是否为山鸢尾将其转换成1或者0。
# 由于iris数据集将山鸢尾标记为0,我们将其从0置为1,同时把其他物种标记为0。
# 本次训练只使用两种特征:花瓣长度和花瓣宽度,这两个特征在x-value的第三列和第四列
# iris.target = {0, 1, 2}, where '0' is setosa
# iris.data ~ [sepal.width, sepal.length, pedal.width, pedal.length]
iris = datasets.load_iris()
binary_target = np.array([1. if x==0 else 0. for x in iris.target])
iris_2d = np.array([[x[2], x[3]] for x in iris.data])

# 声明批量训练大小
batch_size = 20

# 初始化计算图
sess = tf.Session()

# 声明数据占位符
x1_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
x2_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

# 声明模型变量
# Create variables A and b (0 = x1 - A*x2 + b)
A = tf.Variable(tf.random_normal(shape=[1, 1]))
b = tf.Variable(tf.random_normal(shape=[1, 1]))

# 定义线性模型:
# 如果找到的数据点在直线以上,则将数据点代入x2-x1*A-b计算出的结果大于0;
# 同理找到的数据点在直线以下,则将数据点代入x2-x1*A-b计算出的结果小于0。
# x1 - A*x2 + b
my_mult = tf.matmul(x2_data, A)
my_add = tf.add(my_mult, b)
my_output = tf.subtract(x1_data, my_add)

# 增加TensorFlow的sigmoid交叉熵损失函数(cross entropy)
xentropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output, labels=y_target)

# 声明优化器方法
my_opt = tf.train.GradientDescentOptimizer(0.05)
train_step = my_opt.minimize(xentropy)

# 创建一个变量初始化操作
init = tf.global_variables_initializer()
sess.run(init)

# 运行迭代1000次
for i in range(1000):
  rand_index = np.random.choice(len(iris_2d), size=batch_size)
  # rand_x = np.transpose([iris_2d[rand_index]])
  # 传入三种数据:花瓣长度、花瓣宽度和目标变量
  rand_x = iris_2d[rand_index]
  rand_x1 = np.array([[x[0]] for x in rand_x])
  rand_x2 = np.array([[x[1]] for x in rand_x])
  #rand_y = np.transpose([binary_target[rand_index]])
  rand_y = np.array([[y] for y in binary_target[rand_index]])
  sess.run(train_step, feed_dict={x1_data: rand_x1, x2_data: rand_x2, y_target: rand_y})
  if (i+1)%200==0:
    print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ', b = ' + str(sess.run(b)))

# 绘图
# 获取斜率/截距
# Pull out slope/intercept
[[slope]] = sess.run(A)
[[intercept]] = sess.run(b)

# 创建拟合线
x = np.linspace(0, 3, num=50)
ablineValues = []
for i in x:
 ablineValues.append(slope*i+intercept)

# 绘制拟合曲线
setosa_x = [a[1] for i,a in enumerate(iris_2d) if binary_target[i]==1]
setosa_y = [a[0] for i,a in enumerate(iris_2d) if binary_target[i]==1]
non_setosa_x = [a[1] for i,a in enumerate(iris_2d) if binary_target[i]==0]
non_setosa_y = [a[0] for i,a in enumerate(iris_2d) if binary_target[i]==0]
plt.plot(setosa_x, setosa_y, 'rx', ms=10, mew=2, label='setosa')
plt.plot(non_setosa_x, non_setosa_y, 'ro', label='Non-setosa')
plt.plot(x, ablineValues, 'b-')
plt.xlim([0.0, 2.7])
plt.ylim([0.0, 7.1])
plt.suptitle('Linear Separator For I.setosa', fontsize=20)
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.legend(loc='lower right')
plt.show()

输出:

Step #200 A = [[ 8.70572948]], b = [[-3.46638322]]
Step #400 A = [[ 10.21302414]], b = [[-4.720438]]
Step #600 A = [[ 11.11844635]], b = [[-5.53361702]]
Step #800 A = [[ 11.86427212]], b = [[-6.0110755]]
Step #1000 A = [[ 12.49524498]], b = [[-6.29990339]]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • Python实现的朴素贝叶斯分类器示例
  • python机器学习实战之最近邻kNN分类器
  • 用Python从零实现贝叶斯分类器的机器学习的教程
(0)

相关推荐

  • Python实现的朴素贝叶斯分类器示例

    本文实例讲述了Python实现的朴素贝叶斯分类器.分享给大家供大家参考,具体如下: 因工作中需要,自己写了一个朴素贝叶斯分类器. 对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的概率为零导致整个条件概率都为零的情况出现. 朴素贝叶斯的基本原理网上很容易查到,这里不再叙述,直接附上代码 因工作中需要,自己写了一个朴素贝叶斯分类器.对于未出现的属性,采取了拉普拉斯平滑,避免未出现的属性的概率为零导致整个条件概率都为零的情况出现. class NBClassify(object): def _

  • 用Python从零实现贝叶斯分类器的机器学习的教程

    朴素贝叶斯算法简单高效,在处理分类问题上,是应该首先考虑的方法之一. 通过本教程,你将学到朴素贝叶斯算法的原理和Python版本的逐步实现. 更新:查看后续的关于朴素贝叶斯使用技巧的文章"Better Naive Bayes: 12 Tips To Get The Most From The Naive Bayes Algorithm" 朴素贝叶斯分类器,Matt Buck保留部分版权 关于朴素贝叶斯 朴素贝叶斯算法是一个直观的方法,使用每个属性归属于某个类的概率来做预测.你可以使用这

  • python机器学习实战之最近邻kNN分类器

    K近邻法是有监督学习方法,原理很简单,假设我们有一堆分好类的样本数据,分好类表示每个样本都一个对应的已知类标签,当来一个测试样本要我们判断它的类别是, 就分别计算到每个样本的距离,然后选取离测试样本最近的前K个样本的标签累计投票, 得票数最多的那个标签就为测试样本的标签. 源代码详解: #-*- coding:utf-8 -*- #!/usr/bin/python # 测试代码 约会数据分类 import KNN KNN.datingClassTest1() 标签为字符串 KNN.datingC

  • TensorFlow实现创建分类器

    本文实例为大家分享了TensorFlow实现创建分类器的具体代码,供大家参考,具体内容如下 创建一个iris数据集的分类器. 加载样本数据集,实现一个简单的二值分类器来预测一朵花是否为山鸢尾.iris数据集有三类花,但这里仅预测是否是山鸢尾.导入iris数据集和工具库,相应地对原数据集进行转换. # Combining Everything Together #---------------------------------- # This file will perform binary c

  • TensorFlow神经网络创建多层感知机MNIST数据集

    前面使用TensorFlow实现一个完整的Softmax Regression,并在MNIST数据及上取得了约92%的正确率. 前文传送门: TensorFlow教程Softmax逻辑回归识别手写数字MNIST数据集 现在建含一个隐层的神经网络模型(多层感知机). import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True)

  • python生成tensorflow输入输出的图像格式的方法

    TensorFLow能够识别的图像文件,可以通过numpy,使用tf.Variable或者tf.placeholder加载进tensorflow:也可以通过自带函数(tf.read)读取,当图像文件过多时,一般使用pipeline通过队列的方法进行读取.下面我们介绍两种生成tensorflow的图像格式的方法,供给tensorflow的graph的输入与输出. import cv2 import numpy as np import h5py height = 460 width = 345 w

  • 详解tensorflow实现迁移学习实例

    本文主要是总结利用tensorflow实现迁移学习的基本步骤. 所谓迁移学习,就是将上一个问题上训练好的模型通过简单的调整使其适用于一个新的问题.比如说,我们可以保留训练好的Inception-v3模型中所有的参数,只替换最后一层全连接层.在最后一层全连接层之前的网络称之为瓶颈层(bottleneck). 持久化 首先需要简单介绍下tensorflow中的持久化:在tensorflow中提供了一个非常简单的API来保存和还原一个神经网络模型,这个API就是tf.train.Saver类.当采用该

  • tensorflow训练中出现nan问题的解决

    深度学习中对于网络的训练是参数更新的过程,需要注意一种情况就是输入数据未做归一化时,如果前向传播结果已经是[0,0,0,1,0,0,0,0]这种形式,而真实结果是[1,0,0,0,0,0,0,0,0],此时由于得出的结论不惧有概率性,而是错误的估计值,此时反向传播会使得权重和偏置值变的无穷大,导致数据溢出,也就出现了nan的问题. 解决办法: 1.对输入数据进行归一化处理,如将输入的图片数据除以255将其转化成0-1之间的数据; 2.对于层数较多的情况,各层都做batch_nomorlizati

  • 用十张图详解TensorFlow数据读取机制(附代码)

    在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下TensorFlow的数据读取机制,文章的最后还会给出实战代码以供参考. TensorFlow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示: 假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg--我们只需要把

  • 基于docker安装tensorflow的完整步骤

    前言 google又一次成为大家膜拜的大神了.google大神在引导这机器学习的方向. 同时docker 也是一个非常好的工具,大大的方便了开发环境的构建,之前需要配置安装. 最近在自学机器学习,大热的Tensorflow自然不能错过,所以首先解决安装问题,为了不影响本地环境,所以本文基于Docker来安装Tensorflow,我的环境是Ubuntu16.04. 安装Docker Docker分为CE和EE,这里我们选择CE,也就是常规的社区版,首先移除本机上可能存在的旧版本. 移除旧版本 $

  • 安装多个版本的TensorFlow的方法步骤

    TensorFlow 2.0测试版在今年春季发布,新版本比1.x版本在易用性上有了很大的提升.但是由于2.0发布还没有多久,现在大部分论文的实现代码都是1.x版本的,所以在学习TensorFlow的过程中同时安装1.x和2.0两个版本是很有必要的. 下面是具体操作 首先需要安装Anaconda 然后进入Anaconda prompt(未避免安装失败,最好以管理员身份运行) 安装第一个版本的tensorflow: 现在是默认环境,输入要安装的第一个tensorflow版本:pip install

  • Python sklearn中的.fit与.predict的用法说明

    我就废话不多说了,大家还是直接看代码吧~ clf=KMeans(n_clusters=5) #创建分类器对象 fit_clf=clf.fit(X) #用训练器数据拟合分类器模型 clf.predict(X) #也可以给新数据数据对其预测 print(clf.cluster_centers_) #输出5个类的聚类中心 y_pred = clf.fit_predict(X) #用训练器数据X拟合分类器模型并对训练器数据X进行预测 print(y_pred) #输出预测结果 补充知识:sklearn中

  • tensorflow创建变量以及根据名称查找变量

    环境:Ubuntu14.04,tensorflow=1.4(bazel源码安装),Anaconda python=3.6 声明变量主要有两种方法:tf.Variable和 tf.get_variable,二者的最大区别是: (1) tf.Variable是一个类,自带很多属性函数:而 tf.get_variable是一个函数; (2) tf.Variable只能生成独一无二的变量,即如果给出的name已经存在,则会自动修改生成新的变量name; (3) tf.get_variable可以用于生成

随机推荐