python3学习笔记之多进程分布式小例子

最近一直跟着廖大在学Python,关于分布式进程的小例子挺有趣的,这里做个记录。

分布式进程

Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个进程中,依靠网络通信。由于managers模块封装很好,不必了解网络通信的细节,就可以很容易地编写分布式多进程程序。

master服务端原理:通过managers模块把Queue通过网络暴露出去,其他机器的进程就可以访问Queue了
服务进程负责启动Queue,把Queue注册到网络上,然后往Queue里面写入任务,代码如下:

#task_master.py
#coding=utf-8

#多进程分布式例子
#服务器端

from multiprocessing.managers import BaseManager
from multiprocessing import freeze_support #server启动报错,提示需要引用此包
import random,time,queue

#发送任务的队列
task_queue = queue.Queue()
#接收结果的队列
result_queue = queue.Queue()

#从BaseManager继承的QueueManager
class QueueManager(BaseManager):
  pass
#win7 64 貌似不支持callable下调用匿名函数lambda,这里封装一下
def return_task_queue():
  global task_queue
  return task_queue
def return_result_queue():
  global result_queue
  return result_queue

def test():
  #把两个Queue注册到网络上,callable参数关联了Queue对象
  #QueueManager.register('get_task_queue',callable=lambda:task_queue)
  #QueueManager.register('get_result_queue',callable=lambda:result_queue)
  QueueManager.register('get_task_queue',callable=return_task_queue)
  QueueManager.register('get_result_queue',callable=return_result_queue)
  #绑定端口5000,设置验证码‘abc'
  manager = QueueManager(address=('127.0.0.1',5000),authkey=b'abc')#这里必须加上本地默认ip地址127.0.0.1
  #启动Queue
  manager.start()
  #server = manager.get_server()
  #server.serve_forever()
  print('start server master')
  #获得通过网络访问的Queue对象
  task = manager.get_task_queue()
  result = manager.get_result_queue()
  #放几个任务进去
  for i in range(10):
    n = random.randint(0,10000)
    print('put task %d...' % n)
    task.put(n)
  #从result队列读取结果
  print('try get results...')
  for i in range(10):
    r = result.get(timeout=10)
    print('result:%s' % r)

  #关闭
  manager.shutdown()
  print('master exit')

if __name__ == '__main__':
  freeze_support()
  test()

运行截图如下:

在分布式多进程环境下,添加任务到Queue不可以直接对原始的task_queue进行操作,那样就绕过了QueueManager的封装,必须通过manager.get_task_queue()获得的Queue接口添加。

任务进程,代码如下:

#task_worker.py
#coding=utf-8

#多进程分布式例子
#非服务端:worker

import time,sys,queue
from multiprocessing.managers import BaseManager

#创建类似的QueueManager
class QueueManager(BaseManager):
  pass

#由于这个QueueManager只从网络上获取Queue,所以注册时只提供名字即可
QueueManager.register('get_task_queue')
QueueManager.register('get_result_queue')

#连接到服务器,也就是运行task_master.py的机器
server_addr = '127.0.0.1'
print('connect to server %s...'% server_addr)
#端口和验证码注意要保持完全一致
m = QueueManager(address=(server_addr,5000),authkey=b'abc')
#从网络连接
m.connect()
#获取Queue的对象
task = m.get_task_queue()
result = m.get_result_queue()
#从task队列获取任务,并把结果写入result队列
for i in range(10):
  try:
    n = task.get(timeout=1)
    print('run task %d * %d...'% (n,n))
    r = '%d * %d = %d' % (n,n,n*n)
    time.sleep(1)
    result.put(r)
  except queue.Empty:
    print('task queue is empty')
#处理结果
print('worker exit')

运行截图如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • Python多进程并发(multiprocessing)用法实例详解
  • 浅析Python中的多进程与多线程的使用
  • Python多进程通信Queue、Pipe、Value、Array实例
  • Python多进程同步Lock、Semaphore、Event实例
  • 探究Python多进程编程下线程之间变量的共享问题
  • Python多线程、异步+多进程爬虫实现代码
  • Python多进程分块读取超大文件的方法
  • Python控制多进程与多线程并发数总结
(0)

相关推荐

  • Python多进程分块读取超大文件的方法

    本文实例讲述了Python多进程分块读取超大文件的方法.分享给大家供大家参考,具体如下: 读取超大的文本文件,使用多进程分块读取,将每一块单独输出成文件 # -*- coding: GBK -*- import urlparse import datetime import os from multiprocessing import Process,Queue,Array,RLock """ 多进程分块读取文件 """ WORKERS = 4

  • 探究Python多进程编程下线程之间变量的共享问题

     1.问题: 群中有同学贴了如下一段代码,问为何 list 最后打印的是空值? from multiprocessing import Process, Manager import os manager = Manager() vip_list = [] #vip_list = manager.list() def testFunc(cc): vip_list.append(cc) print 'process id:', os.getpid() if __name__ == '__main_

  • Python多进程同步Lock、Semaphore、Event实例

    同步的方法基本与多线程相同. 1) Lock 当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突. 复制代码 代码如下: import multiprocessing import sys def worker_with(lock, f):     with lock:         fs = open(f,"a+")         fs.write('Lock acquired via with\n')         fs.close()         def

  • Python多进程并发(multiprocessing)用法实例详解

    本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

  • Python多进程通信Queue、Pipe、Value、Array实例

    queue和pipe的区别: pipe用来在两个进程间通信.queue用来在多个进程间实现通信. 此两种方法为所有系统多进程通信的基本方法,几乎所有的语言都支持此两种方法. 1)Queue & JoinableQueue queue用来在进程间传递消息,任何可以pickle-able的对象都可以在加入到queue. multiprocessing.JoinableQueue 是 Queue的子类,增加了task_done()和join()方法. task_done()用来告诉queue一个tas

  • Python多线程、异步+多进程爬虫实现代码

    安装Tornado 省事点可以直接用grequests库,下面用的是tornado的异步client. 异步用到了tornado,根据官方文档的例子修改得到一个简单的异步爬虫类.可以参考下最新的文档学习下. pip install tornado 异步爬虫 #!/usr/bin/env python # -*- coding:utf-8 -*- import time from datetime import timedelta from tornado import httpclient, g

  • 浅析Python中的多进程与多线程的使用

    在批评Python的讨论中,常常说起Python多线程是多么的难用.还有人对 global interpreter lock(也被亲切的称为"GIL")指指点点,说它阻碍了Python的多线程程序同时运行.因此,如果你是从其他语言(比如C++或Java)转过来的话,Python线程模块并不会像你想象的那样去运行.必须要说明的是,我们还是可以用Python写出能并发或并行的代码,并且能带来性能的显著提升,只要你能顾及到一些事情.如果你还没看过的话,我建议你看看Eqbal Quran的文章

  • Python控制多进程与多线程并发数总结

    一.前言 本来写了脚本用于暴力破解密码,可是1秒钟尝试一个密码2220000个密码我的天,想用多线程可是只会一个for全开,难道开2220000个线程吗?只好学习控制线程数了,官方文档不好看,觉得结构不够清晰,网上找很多文章也都不很清晰,只有for全开线程,没有控制线程数的具体说明,最终终于根据多篇文章和官方文档算是搞明白基础的多线程怎么实现法了,怕长时间不用又忘记,找着麻烦就贴这了,跟我一样新手也可以参照参照. 先说进程和线程的区别: 地址空间:进程内的一个执行单元;进程至少有一个线程;它们共

  • python3学习笔记之多进程分布式小例子

    最近一直跟着廖大在学Python,关于分布式进程的小例子挺有趣的,这里做个记录. 分布式进程 Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上.一个服务进程可以作为调度者,将任务分布到其他多个进程中,依靠网络通信.由于managers模块封装很好,不必了解网络通信的细节,就可以很容易地编写分布式多进程程序. master服务端原理:通过managers模块把Queue通过网络暴露出去,其他机器的进程就可以访问Queue了 服

  • python学习笔记之多进程

    我们现代的操作系统,都是支持"多任务"的操作系统,对于操作系统来说,一个任务就是一个进程(process).比如打开一个浏览器就是启动一个浏览器进程. 如果我们将计算器的核心CPU比喻为一座工厂,那么进程就像工厂里的车间,它代表CPU所能处理的单个任务.任一时刻,CPU总是运行一个进程,其他进程处于非运行状态. 看到这大家可能会有一些疑问了,其他进程处于非运行状态?可是我用浏览器访问网页的时候,音乐播放器明明也在运行啊. 实际上是操作系统轮流让各个任务交替执行,任务1执行0.01秒,切

  • JS学习笔记之贪吃蛇小游戏demo实例详解

    本文实例讲述了JS学习笔记之贪吃蛇小游戏demo实例.分享给大家供大家参考,具体如下: 最近跟着视频教程打了一个贪吃蛇, 来记录一下实现思路, 先上代码 静态页 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8" /> <title>贪吃蛇</title> </head> <style> *{ mar

  • Python3学习笔记之列表方法示例详解

    前言 本文主要给大家介绍了关于Python3列表方法的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 1 使用[]或者list()创建列表 user = [] user = list() 2 使用list() 可以将其他类型转换成列表 # 将字符串转成列表 >>> list('abcde') ['a', 'b', 'c', 'd', 'e'] # 将元祖转成列表 >>> list(('a','b','c')) ['a', 'b', 'c']

  • jQuery学习笔记之2个小技巧

    1.jQuery功能函数前缀 在javascript中,开发者通常会编写一些小函数来处理各种操作细节,例如在用户提交表单时,要将文本框最前端和最末端的空格内容清理掉.而javascript中没有类似trim()功能,在师院jQuery后,便可以使用trim()函数. trim()函数是jQuery对象的一个方法,使用以下例子 复制代码 代码如下: <script type="text/javascript">             var sString = "

  • jabsorb笔记_几个小例子第1/2页

    研究了一下 jabsorb,写了几个简单的例子,希望能够帮助菜鸟快速入门. 首先引用jabsorb-1.2.2.jar,slf4j-api-1.4.2.jar,slf4j-jdk14-1.4.2.jar,jsonrpc.js 类文件: package com.test; import java.util.HashMap; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import ja

  • 详解Angular2学习笔记之Html属性绑定

    简介 基本HTML属性 <td [attr.colspan]="tableColspan"></td> Css 类绑定 <!-- 第一种情况 class 类全部替换 --> <div [class]="divClass">CSS 类绑定,[class] 全部替换的例子</div> <!-- 第二种情况 替换 class 类的部分属性 --> <div [class.a]="isS

  • 快速入门python学习笔记

    本篇不是教给大家如何去学习python,有需要详细深入学习的朋友可以参阅:Python基础语言学习笔记总结(精华)本文通过一周快速学习python入门知识总计了学习笔记和心得,分享给大家. ##一:语法元素 ###1.注释,变量,空格的使用 注释 单行注释以#开头,多行注释以''开头和结尾 变量 变量前面不需要声明数据类型,但是必须赋值 变量命名可以使用大小写字母,数字和下划线的组合,但是首字母只能是大小写字母或者下划线,不能使用空格 中文等非字母符号也可以作为名字 空格的使用 表示缩进关系的空

  • Python3.4学习笔记之类型判断,异常处理,终止程序操作小结

    本文实例讲述了Python3.4类型判断,异常处理,终止程序操作.分享给大家供大家参考,具体如下: python3.4学习笔记 类型判断,异常处理,终止程序,实例代码: #idle中按F5可以运行代码 #引入外部模块 import xxx #random模块,randint(开始数,结束数) 产生整数随机数 import random import sys import os secret = random.randint(1,10) temp = input("请输入一个数字\n")

  • 微信小程序学习笔记之获取位置信息操作图文详解

    本文实例讲述了微信小程序学习笔记之获取位置信息操作.分享给大家供大家参考,具体如下: 前面介绍了微信小程序文件上传.下载操作.这里分析一下获取位置信息操作. [获取当前位置信息]wx.getLocation() getlocation.wxml: <view> <button bindtap="getlocation">获取位置</button> </view> getlocation.js: Page({ getlocation: fu

随机推荐