基于循环神经网络(RNN)的古诗生成器

基于循环神经网络(RNN)的古诗生成器,具体内容如下

之前在手机百度上看到有个“为你写诗”功能,能够随机生成古诗,当时感觉很酷炫= =

在学习了深度学习后,了解了一下原理,打算自己做个实现练练手,于是,就有了这个项目。文中如有瑕疵纰漏之处,还请路过的诸位大佬不吝赐教,万分感谢!

使用循环神经网络实现的古诗生成器,能够完成古体诗的自动生成。我简单地训练了一下,格式是对上了,至于意境么。。。emmm,呵呵

举一下模型测试结果例子:

1.生成古体诗

示例1:

树阴飞尽水三依,谩自为能厚景奇。
莫怪仙舟欲西望,楚人今此惜春风。

示例2:

岩外前苗点有泉,紫崖烟霭碧芊芊。
似僧月明秋更好,一踪颜事欲犹伤?

2.生成藏头诗(以“神策”为例)

示例1:

神照隆祭测馨尘,策紫珑氲羽团娟。

示例2:

神辇莺满花台潭,策穷渐见仙君地。

下面记录项目实现过程(由于都是文本处理方面,跟前一个项目存在很多类似的内容,对于这部分内容,我就只简单提一下,不展开了,新的东西再具体说):

1.数据预处理

数据集使用四万首的唐诗训练集,可以点击这里进行下载。

数据预处理的过程与前一个项目TensorFlow练手项目一:使用循环神经网络(RNN)实现影评情感分类大同小异,可以参考前一个项目,这里就不多说了,直接上代码。

# -*- coding: utf-8 -*-
# @Time : 18-3-13 上午11:04
# @Author : AaronJny
# @Email : Aaron__7@163.com
import sys

reload(sys)
sys.setdefaultencoding('utf8')
import collections

ORIGIN_DATA = 'origin_data/poetry.txt' # 源数据路径

OUTPUT_DATA = 'processed_data/poetry.txt' # 输出向量路径

VOCAB_DATA = 'vocab/poetry.vocab'

def word_to_id(word, id_dict):
 if word in id_dict:
  return id_dict[word]
 else:
  return id_dict['<unknow>']

poetry_list = [] # 存放唐诗的数组

# 从文件中读取唐诗
with open(ORIGIN_DATA, 'r') as f:
 f_lines = f.readlines()
 print '唐诗总数 : {}'.format(len(f_lines))
 # 逐行进行处理
 for line in f_lines:
  # 去除前后空白符,转码
  strip_line = line.strip().decode('utf8')
  try:
   # 将唐诗分为标题和内容
   title, content = strip_line.split(':')
  except:
   # 出现多个':'的将被舍弃
   continue
  # 去除内容中的空格
  content = content.strip().replace(' ', '')
  # 舍弃含有非法字符的唐诗
  if '(' in content or '(' in content or '<' in content or '《' in content or '_' in content or '[' in content:
   continue
  # 舍弃过短或过长的唐诗
  lenth = len(content)
  if lenth < 20 or lenth > 100:
   continue
  # 加入列表
  poetry_list.append('s' + content + 'e')

print '用于训练的唐诗数 : {}'.format(len(poetry_list))

poetry_list=sorted(poetry_list,key=lambda x:len(x))

words_list = []
# 获取唐诗中所有的字符
for poetry in poetry_list:
 words_list.extend([word for word in poetry])
# 统计其出现的次数
counter = collections.Counter(words_list)
# 排序
sorted_words = sorted(counter.items(), key=lambda x: x[1], reverse=True)
# 获得出现次数降序排列的字符列表
words_list = ['<unknow>'] + [x[0] for x in sorted_words]
# 这里选择保留高频词的数目,词只有不到七千个,所以我全部保留
words_list = words_list[:len(words_list)]

print '词汇表大小 : {}'.format(words_list)

with open(VOCAB_DATA, 'w') as f:
 for word in words_list:
  f.write(word + '\n')

# 生成单词到id的映射
word_id_dict = dict(zip(words_list, range(len(words_list))))
# 将poetry_list转换成向量形式
id_list=[]
for poetry in poetry_list:
 id_list.append([str(word_to_id(word,word_id_dict)) for word in poetry])

# 将向量写入文件
with open(OUTPUT_DATA, 'w') as f:
 for id_l in id_list:
  f.write(' '.join(id_l) + '\n')

2.模型编写

这里要编写两个模型,一个用于训练,一个用于验证(生成古体诗)。两个模型大体上一致,因为用途不同,所以有些细节有出入。当进行验证时,验证模型读取训练模型的参数进行覆盖。

注释比较细,就不多说了,看代码。对于两个模型不同的一些关键细节,我也用注释进行了说明。

# -*- coding: utf-8 -*-
# @Time : 18-3-13 下午2:06
# @Author : AaronJny
# @Email : Aaron__7@163.com
import tensorflow as tf
import functools
import setting

HIDDEN_SIZE = 128 # LSTM隐藏节点个数
NUM_LAYERS = 2 # RNN深度

def doublewrap(function):
 @functools.wraps(function)
 def decorator(*args, **kwargs):
  if len(args) == 1 and len(kwargs) == 0 and callable(args[0]):
   return function(args[0])
  else:
   return lambda wrapee: function(wrapee, *args, **kwargs)

 return decorator

@doublewrap
def define_scope(function, scope=None, *args, **kwargs):
 attribute = '_cache_' + function.__name__
 name = scope or function.__name__

 @property
 @functools.wraps(function)
 def decorator(self):
  if not hasattr(self, attribute):
   with tf.variable_scope(name, *args, **kwargs):
    setattr(self, attribute, function(self))
  return getattr(self, attribute)

 return decorator

class TrainModel(object):
 """
 训练模型
 """

 def __init__(self, data, labels, emb_keep, rnn_keep):
  self.data = data # 数据
  self.labels = labels # 标签
  self.emb_keep = emb_keep # embedding层dropout保留率
  self.rnn_keep = rnn_keep # lstm层dropout保留率
  self.global_step
  self.cell
  self.predict
  self.loss
  self.optimize

 @define_scope
 def cell(self):
  """
  rnn网络结构
  :return:
  """
  lstm_cell = [
   tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(HIDDEN_SIZE), output_keep_prob=self.rnn_keep) for
   _ in range(NUM_LAYERS)]
  cell = tf.nn.rnn_cell.MultiRNNCell(lstm_cell)
  return cell

 @define_scope
 def predict(self):
  """
  定义前向传播
  :return:
  """
  # 创建词嵌入矩阵权重
  embedding = tf.get_variable('embedding', shape=[setting.VOCAB_SIZE, HIDDEN_SIZE])
  # 创建softmax层参数
  if setting.SHARE_EMD_WITH_SOFTMAX:
   softmax_weights = tf.transpose(embedding)
  else:
   softmax_weights = tf.get_variable('softmaweights', shape=[HIDDEN_SIZE, setting.VOCAB_SIZE])
  softmax_bais = tf.get_variable('softmax_bais', shape=[setting.VOCAB_SIZE])
  # 进行词嵌入
  emb = tf.nn.embedding_lookup(embedding, self.data)
  # dropout
  emb_dropout = tf.nn.dropout(emb, self.emb_keep)
  # 计算循环神经网络的输出
  self.init_state = self.cell.zero_state(setting.BATCH_SIZE, dtype=tf.float32)
  outputs, last_state = tf.nn.dynamic_rnn(self.cell, emb_dropout, scope='d_rnn', dtype=tf.float32,
            initial_state=self.init_state)
  outputs = tf.reshape(outputs, [-1, HIDDEN_SIZE])
  # 计算logits
  logits = tf.matmul(outputs, softmax_weights) + softmax_bais
  return logits

 @define_scope
 def loss(self):
  """
  定义损失函数
  :return:
  """
  # 计算交叉熵
  outputs_target = tf.reshape(self.labels, [-1])
  loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.predict, labels=outputs_target, )
  # 平均
  cost = tf.reduce_mean(loss)
  return cost

 @define_scope
 def global_step(self):
  """
  global_step
  :return:
  """
  global_step = tf.Variable(0, trainable=False)
  return global_step

 @define_scope
 def optimize(self):
  """
  定义反向传播过程
  :return:
  """
  # 学习率衰减
  learn_rate = tf.train.exponential_decay(setting.LEARN_RATE, self.global_step, setting.LR_DECAY_STEP,
            setting.LR_DECAY)
  # 计算梯度,并防止梯度爆炸
  trainable_variables = tf.trainable_variables()
  grads, _ = tf.clip_by_global_norm(tf.gradients(self.loss, trainable_variables), setting.MAX_GRAD)
  # 创建优化器,进行反向传播
  optimizer = tf.train.AdamOptimizer(learn_rate)
  train_op = optimizer.apply_gradients(zip(grads, trainable_variables), self.global_step)
  return train_op

class EvalModel(object):
 """
 验证模型
 """

 def __init__(self, data, emb_keep, rnn_keep):
  self.data = data # 输入
  self.emb_keep = emb_keep # embedding层dropout保留率
  self.rnn_keep = rnn_keep # lstm层dropout保留率
  self.cell
  self.predict
  self.prob

 @define_scope
 def cell(self):
  """
  rnn网络结构
  :return:
  """
  lstm_cell = [
   tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(HIDDEN_SIZE), output_keep_prob=self.rnn_keep) for
   _ in range(NUM_LAYERS)]
  cell = tf.nn.rnn_cell.MultiRNNCell(lstm_cell)
  return cell

 @define_scope
 def predict(self):
  """
  定义前向传播过程
  :return:
  """
  embedding = tf.get_variable('embedding', shape=[setting.VOCAB_SIZE, HIDDEN_SIZE])

  if setting.SHARE_EMD_WITH_SOFTMAX:
   softmax_weights = tf.transpose(embedding)
  else:
   softmax_weights = tf.get_variable('softmaweights', shape=[HIDDEN_SIZE, setting.VOCAB_SIZE])
  softmax_bais = tf.get_variable('softmax_bais', shape=[setting.VOCAB_SIZE])

  emb = tf.nn.embedding_lookup(embedding, self.data)
  emb_dropout = tf.nn.dropout(emb, self.emb_keep)
  # 与训练模型不同,这里只要生成一首古体诗,所以batch_size=1
  self.init_state = self.cell.zero_state(1, dtype=tf.float32)
  outputs, last_state = tf.nn.dynamic_rnn(self.cell, emb_dropout, scope='d_rnn', dtype=tf.float32,
            initial_state=self.init_state)
  outputs = tf.reshape(outputs, [-1, HIDDEN_SIZE])

  logits = tf.matmul(outputs, softmax_weights) + softmax_bais
  # 与训练模型不同,这里要记录最后的状态,以此来循环生成字,直到完成一首诗
  self.last_state = last_state
  return logits

 @define_scope
 def prob(self):
  """
  softmax计算概率
  :return:
  """
  probs = tf.nn.softmax(self.predict)
  return probs

3.组织数据集

编写一个类用于组织数据,方便训练使用。代码很简单,应该不存在什么问题。

# -*- coding: utf-8 -*-
# @Time : 18-3-13 上午11:59
# @Author : AaronJny
# @Email : Aaron__7@163.com
import numpy as np

BATCH_SIZE = 64
DATA_PATH = 'processed_data/poetry.txt'

class Dataset(object):
 def __init__(self, batch_size):
  self.batch_size = batch_size
  self.data, self.target = self.read_data()
  self.start = 0
  self.lenth = len(self.data)

 def read_data(self):
  """
  从文件中读取数据,构建数据集
  :return: 训练数据,训练标签
  """
  # 从文件中读取唐诗向量
  id_list = []
  with open(DATA_PATH, 'r') as f:
   f_lines = f.readlines()
   for line in f_lines:
    id_list.append([int(num) for num in line.strip().split()])
  # 计算可以生成多少个batch
  num_batchs = len(id_list) // self.batch_size
  # data和target
  x_data = []
  y_data = []
  # 生成batch
  for i in range(num_batchs):
   # 截取一个batch的数据
   start = i * self.batch_size
   end = start + self.batch_size
   batch = id_list[start:end]
   # 计算最大长度
   max_lenth = max(map(len, batch))
   # 填充
   tmp_x = np.full((self.batch_size, max_lenth), 0, dtype=np.int32)
   # 数据覆盖
   for row in range(self.batch_size):
    tmp_x[row, :len(batch[row])] = batch[row]
   tmp_y = np.copy(tmp_x)
   tmp_y[:, :-1] = tmp_y[:, 1:]
   x_data.append(tmp_x)
   y_data.append(tmp_y)
  return x_data, y_data

 def next_batch(self):
  """
  获取下一个batch
  :return:
  """
  start = self.start
  self.start += 1
  if self.start >= self.lenth:
   self.start = 0
  return self.data[start], self.target[start]

if __name__ == '__main__':
 dataset = Dataset(BATCH_SIZE)
 dataset.read_data()

4.训练模型

万事俱备,开始训练。

没有按照epoch进行训练,这里只是循环训练指定个mini_batch。

训练过程中,会定期显示当前训练步数以及loss值。会定期保存当前模型及对应checkpoint。

训练代码:

# -*- coding: utf-8 -*-

# @Time : 18-3-13 下午2:50
# @Author : AaronJny
# @Email : Aaron__7@163.com
import tensorflow as tf
from rnn_models import TrainModel
import dataset
import setting

TRAIN_TIMES = 30000 # 迭代总次数(没有计算epoch)
SHOW_STEP = 1 # 显示loss频率
SAVE_STEP = 100 # 保存模型参数频率

x_data = tf.placeholder(tf.int32, [setting.BATCH_SIZE, None]) # 输入数据
y_data = tf.placeholder(tf.int32, [setting.BATCH_SIZE, None]) # 标签
emb_keep = tf.placeholder(tf.float32) # embedding层dropout保留率
rnn_keep = tf.placeholder(tf.float32) # lstm层dropout保留率

data = dataset.Dataset(setting.BATCH_SIZE) # 创建数据集

model = TrainModel(x_data, y_data, emb_keep, rnn_keep) # 创建训练模型

saver = tf.train.Saver()

with tf.Session() as sess:
 sess.run(tf.global_variables_initializer()) # 初始化
 for step in range(TRAIN_TIMES):
  # 获取训练batch
  x, y = data.next_batch()
  # 计算loss
  loss, _ = sess.run([model.loss, model.optimize],
       {model.data: x, model.labels: y, model.emb_keep: setting.EMB_KEEP,
       model.rnn_keep: setting.RNN_KEEP})
  if step % SHOW_STEP == 0:
   print 'step {}, loss is {}'.format(step, loss)
  # 保存模型
  if step % SAVE_STEP == 0:
   saver.save(sess, setting.CKPT_PATH, global_step=model.global_step)

5.验证模型

提供两种方法验证模型:

随机生成古体诗

生成藏头诗

随机生成的结果勉强可以接受,起码格式对了,看起来也像个样子。

生成藏头诗就五花八门了,效果不好,往往要多次才能生成一个差强人意的。emmm,其实也可以理解,毕竟我们指定的“藏头”在训练集中的分布是不能保证的。

这里简单说一下生成古体诗的过程:

1.首先,读取训练模型保存的参数,覆盖验证模型的参数

2.将开始符号's'作为输入,喂给模型,模型将输出下一个字符为此表中各词的概率,以及rnn传递的state。注意,验证模型时,dropout的保留率应设置为1.0

3.根据2中输出的概率,使用轮盘赌法,随机出下一个字

4.将随机出来的字作为输入,前一次输出的state作为本次输入的state,喂给模型,模型将输入下一个字符为此表中各词的概率,以及rnn传递的state

5.重复3,4步骤,直到随机出结束符'e',生成结束。过程中生成的所有字符,构成本次生成的古体诗('s'和'e'不算)

生成藏头诗的过程与生成古体诗是类似的,主要区别在于,在开始和每个标点符号被预测出来时,向模型喂给的是“藏头”中的一个字,就不多说了,详情可参考代码。

# -*- coding: utf-8 -*-
# @Time : 18-3-13 下午2:50
# @Author : AaronJny
# @Email : Aaron__7@163.com
import sys

reload(sys)
sys.setdefaultencoding('utf8')
import tensorflow as tf
import numpy as np
from rnn_models import EvalModel
import utils
import os

# 指定验证时不使用cuda,这样可以在用gpu训练的同时,使用cpu进行验证
os.environ['CUDA_VISIBLE_DEVICES'] = ''

x_data = tf.placeholder(tf.int32, [1, None])

emb_keep = tf.placeholder(tf.float32)

rnn_keep = tf.placeholder(tf.float32)

# 验证用模型
model = EvalModel(x_data, emb_keep, rnn_keep)

saver = tf.train.Saver()
# 单词到id的映射
word2id_dict = utils.read_word_to_id_dict()
# id到单词的映射
id2word_dict = utils.read_id_to_word_dict()

def generate_word(prob):
 """
 选择概率最高的前100个词,并用轮盘赌法选取最终结果
 :param prob: 概率向量
 :return: 生成的词
 """
 prob = sorted(prob, reverse=True)[:100]
 index = np.searchsorted(np.cumsum(prob), np.random.rand(1) * np.sum(prob))
 return id2word_dict[int(index)]

# def generate_word(prob):
#  """
#  从所有词中,使用轮盘赌法选取最终结果
#  :param prob: 概率向量
#  :return: 生成的词
#  """
#  index = int(np.searchsorted(np.cumsum(prob), np.random.rand(1) * np.sum(prob)))
#  return id2word_dict[index]

def generate_poem():
 """
 随机生成一首诗歌
 :return:
 """
 with tf.Session() as sess:
  # 加载最新的模型
  ckpt = tf.train.get_checkpoint_state('ckpt')
  saver.restore(sess, ckpt.model_checkpoint_path)
  # 预测第一个词
  rnn_state = sess.run(model.cell.zero_state(1, tf.float32))
  x = np.array([[word2id_dict['s']]], np.int32)
  prob, rnn_state = sess.run([model.prob, model.last_state],
         {model.data: x, model.init_state: rnn_state, model.emb_keep: 1.0,
         model.rnn_keep: 1.0})
  word = generate_word(prob)
  poem = ''
  # 循环操作,直到预测出结束符号‘e'
  while word != 'e':
   poem += word
   x = np.array([[word2id_dict[word]]])
   prob, rnn_state = sess.run([model.prob, model.last_state],
          {model.data: x, model.init_state: rnn_state, model.emb_keep: 1.0,
          model.rnn_keep: 1.0})
   word = generate_word(prob)
  # 打印生成的诗歌
  print poem

def generate_acrostic(head):
 """
 生成藏头诗
 :param head:每行的第一个字组成的字符串
 :return:
 """
 with tf.Session() as sess:
  # 加载最新的模型
  ckpt = tf.train.get_checkpoint_state('ckpt')
  saver.restore(sess, ckpt.model_checkpoint_path)
  # 进行预测
  rnn_state = sess.run(model.cell.zero_state(1, tf.float32))
  poem = ''
  cnt = 1
  # 一句句生成诗歌
  for x in head:
   word = x
   while word != ',' and word != '。':
    poem += word
    x = np.array([[word2id_dict[word]]])
    prob, rnn_state = sess.run([model.prob, model.last_state],
           {model.data: x, model.init_state: rnn_state, model.emb_keep: 1.0,
           model.rnn_keep: 1.0})
    word = generate_word(prob)
    if len(poem) > 25:
     print 'bad.'
     break
   # 根据单双句添加标点符号
   if cnt & 1:
    poem += ','
   else:
    poem += '。'
   cnt += 1
  # 打印生成的诗歌
  print poem
  return poem

if __name__ == '__main__':
 # generate_acrostic(u'神策')
 generate_poem()

6.一些提取出来的方法和配置

很简单,不多说。

utils.py

# -*- coding: utf-8 -*-
# @Time : 18-3-13 下午4:16
# @Author : AaronJny
# @Email : Aaron__7@163.com
import setting

def read_word_list():
 """
 从文件读取词汇表
 :return: 词汇列表
 """
 with open(setting.VOCAB_PATH, 'r') as f:
  word_list = [word for word in f.read().decode('utf8').strip().split('\n')]
 return word_list

def read_word_to_id_dict():
 """
 生成单词到id的映射
 :return:
 """
 word_list=read_word_list()
 word2id=dict(zip(word_list,range(len(word_list))))
 return word2id

def read_id_to_word_dict():
 """
 生成id到单词的映射
 :return:
 """
 word_list=read_word_list()
 id2word=dict(zip(range(len(word_list)),word_list))
 return id2word

if __name__ == '__main__':
 read_id_to_word_dict()

setting.py

# -*- coding: utf-8 -*-
# @Time : 18-3-13 下午3:08
# @Author : AaronJny
# @Email : Aaron__7@163.com

VOCAB_SIZE = 6272 # 词汇表大小

SHARE_EMD_WITH_SOFTMAX = True # 是否在embedding层和softmax层之间共享参数
MAX_GRAD = 5.0 # 最大梯度,防止梯度爆炸
LEARN_RATE = 0.0005 # 初始学习率
LR_DECAY = 0.92 # 学习率衰减
LR_DECAY_STEP = 600 # 衰减步数
BATCH_SIZE = 64 # batch大小
CKPT_PATH = 'ckpt/model_ckpt' # 模型保存路径
VOCAB_PATH = 'vocab/poetry.vocab' # 词表路径
EMB_KEEP = 0.5 # embedding层dropout保留率

RNN_KEEP = 0.5 # lstm层dropout保留率

7.完毕

编码到此结束,有兴趣的朋友可以自己跑一跑,玩一玩,我就不多做测试了。

项目GitHub地址:https://github.com/AaronJny/peotry_generate

博主也正在学习,能力浅薄,文中如有瑕疵纰漏之处,还请路过的诸位大佬不吝赐教,万分感谢!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • Python实现的递归神经网络简单示例
  • Python基于numpy灵活定义神经网络结构的方法
  • Python实现的人工神经网络算法示例【基于反向传播算法】
  • python机器学习之神经网络(一)
  • 基于循环神经网络(RNN)实现影评情感分类
(0)

相关推荐

  • 基于循环神经网络(RNN)实现影评情感分类

    使用循环神经网络(RNN)实现影评情感分类 作为对循环神经网络的实践,我用循环神经网络做了个影评情感的分类,即判断影评的感情色彩是正面的,还是负面的. 选择使用RNN来做情感分类,主要是因为影评是一段文字,是序列的,而RNN对序列的支持比较好,能够"记忆"前文.虽然可以提取特征词向量,然后交给传统机器学习模型或全连接神经网络去做,也能取得很好的效果,但只从端对端的角度来看的话,RNN无疑是最合适的. 以下介绍实现过程. 一.数据预处理 本文中使用的训练数据集为https://www.c

  • Python实现的人工神经网络算法示例【基于反向传播算法】

    本文实例讲述了Python实现的人工神经网络算法.分享给大家供大家参考,具体如下: 注意:本程序使用Python3编写,额外需要安装numpy工具包用于矩阵运算,未测试python2是否可以运行. 本程序实现了<机器学习>书中所述的反向传播算法训练人工神经网络,理论部分请参考我的读书笔记. 在本程序中,目标函数是由一个输入x和两个输出y组成, x是在范围[-3.14, 3.14]之间随机生成的实数,而两个y值分别对应 y1 = sin(x),y2 = 1. 随机生成一万份训练样例,经过网络的学

  • Python实现的递归神经网络简单示例

    本文实例讲述了Python实现的递归神经网络.分享给大家供大家参考,具体如下: # Recurrent Neural Networks import copy, numpy as np np.random.seed(0) # compute sigmoid nonlinearity def sigmoid(x): output = 1/(1+np.exp(-x)) return output # convert output of sigmoid function to its derivati

  • Python基于numpy灵活定义神经网络结构的方法

    本文实例讲述了Python基于numpy灵活定义神经网络结构的方法.分享给大家供大家参考,具体如下: 用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能! 一.用法 1). 定义一个三层神经网络: '''示例一''' nn = NeuralNetworks([3,4,2]) # 定义神经网络 nn.fit(X,y) # 拟合 print(nn.predict(X)) #预测 说明: 输入层节点数目:3 隐藏层节点数目:4 输出层节点数目:2 2).定义一个五层神经网络:

  • python机器学习之神经网络(一)

    python有专门的神经网络库,但为了加深印象,我自己在numpy库的基础上,自己编写了一个简单的神经网络程序,是基于Rosenblatt感知器的,这个感知器建立在一个线性神经元之上,神经元模型的求和节点计算作用于突触输入的线性组合,同时结合外部作用的偏置,对若干个突触的输入求和后进行调节.为了便于观察,这里的数据采用二维数据. 目标函数是训练结果的误差的平方和,由于目标函数是一个二次函数,只存在一个全局极小值,所以采用梯度下降法的策略寻找目标函数的最小值. 代码如下: import numpy

  • 基于循环神经网络(RNN)的古诗生成器

    基于循环神经网络(RNN)的古诗生成器,具体内容如下 之前在手机百度上看到有个"为你写诗"功能,能够随机生成古诗,当时感觉很酷炫= = 在学习了深度学习后,了解了一下原理,打算自己做个实现练练手,于是,就有了这个项目.文中如有瑕疵纰漏之处,还请路过的诸位大佬不吝赐教,万分感谢! 使用循环神经网络实现的古诗生成器,能够完成古体诗的自动生成.我简单地训练了一下,格式是对上了,至于意境么...emmm,呵呵 举一下模型测试结果例子: 1.生成古体诗 示例1: 树阴飞尽水三依,谩自为能厚景奇.

  • python人工智能tensorflow构建循环神经网络RNN

    目录 学习前言 RNN简介 tensorflow中RNN的相关函数 tf.nn.rnn_cell.BasicLSTMCell tf.nn.dynamic_rnn 全部代码 学习前言 在前一段时间已经完成了卷积神经网络的复习,现在要对循环神经网络的结构进行更深层次的明确. RNN简介 RNN 是当前发展非常火热的神经网络中的一种,它擅长对序列数据进行处理. 什么是序列数据呢?举个例子. 现在假设有四个字,“我” “去” “吃” “饭”.我们可以对它们进行任意的排列组合. “我去吃饭”,表示的就是我

  • python循环神经网络RNN函数tf.nn.dynamic_rnn使用

    目录 学习前言 tf.nn.dynamic_rnn的定义 tf.nn.dynamic_rnn的使用举例 单层实验 多层实验 学习前言 已经完成了RNN网络的构建,但是我们对于RNN网络还有许多疑问,特别是tf.nn.dynamic_rnn函数,其具体的应用方式我们并不熟悉,查询了一下资料,我心里的想法是这样的. tf.nn.dynamic_rnn的定义 tf.nn.dynamic_rnn( cell, inputs, sequence_length=None, initial_state=Non

  • TensorFlow实现RNN循环神经网络

    RNN(recurrent neural Network)循环神经网络 主要用于自然语言处理(nature language processing,NLP) RNN主要用途是处理和预测序列数据 RNN广泛的用于 语音识别.语言模型.机器翻译 RNN的来源就是为了刻画一个序列当前的输出与之前的信息影响后面节点的输出 RNN 是包含循环的网络,允许信息的持久化. RNN会记忆之前的信息,并利用之前的信息影响后面节点的输出. RNN的隐藏层之间的节点是有相连的,隐藏层的输入不仅仅包括输入层的输出,还包

  • Python使用循环神经网络解决文本分类问题的方法详解

    本文实例讲述了Python使用循环神经网络解决文本分类问题的方法.分享给大家供大家参考,具体如下: 1.概念 1.1.循环神经网络 循环神经网络(Recurrent Neural Network, RNN)是一类以序列数据为输入,在序列的演进方向进行递归且所有节点(循环单元)按链式连接的递归神经网络. 卷积网络的输入只有输入数据X,而循环神经网络除了输入数据X之外,每一步的输出会作为下一步的输入,如此循环,并且每一次采用相同的激活函数和参数.在每次循环中,x0乘以系数U得到s0,再经过系数W输入

  • Java基于循环递归回溯实现八皇后问题算法示例

    本文实例讲述了Java基于循环递归回溯实现八皇后问题.分享给大家供大家参考,具体如下: 运行效果图如下: 棋盘接口 /** * 棋盘接口 * @author Administrator * */ public interface Piece { abstract boolean isRow(int line); abstract boolean isCol(int line,int col); } 棋盘类: /** * 棋盘 * @author Administrator * */ public

  • Python机器学习应用之基于BP神经网络的预测篇详解

    目录 一.Introduction 1 BP神经网络的优点 2 BP神经网络的缺点 二.实现过程 1 Demo 2 基于BP神经网络的乳腺癌分类预测 三.Keys 一.Introduction 1 BP神经网络的优点 非线性映射能力:BP神经网络实质上实现了一个从输入到输出的映射功能,数学理论证明三层的神经网络就能够以任意精度逼近任何非线性连续函数.这使得其特别适合于求解内部机制复杂的问题,即BP神经网络具有较强的非线性映射能力. 自学习和自适应能力:BP神经网络在训练时,能够通过学习自动提取输

  • 基于QT设计一个春联自动生成器

    目录 1. 前言 2. 实现原理 3. 示例代码 3.1 获取春联接口 3.2 数据解析代码 3.3 token数据存储 1. 前言 春节是中国最隆重的传统节日,一到过年家家户户肯定是要贴春联:在春节前夕,会用大红纸张,加上浓墨书写祝福词语,在春节当天贴于门框两边,寓意着一年吉祥如意,还会将福字倒转贴于门上,有"福到临门"的意思.为了方便找到合适的春联句子,我这里就采用现成的自然语言处理接口实现了一个自动生成春联的软件,输入提示词就可以完成春联的生成,方便写春联时参考. 下面是实现的效

  • 基于PyQt5制作一个数据图表生成器

    我的需求:手动配置X轴.Y轴.图表标题等参数自动通过Pyecharts模块生成可视化的html数据图表,并将浏览器图表展示到UI界面上. 制作出图表后的效果展示如下: 另外,生成后的图表结果会使用 html 的形式保存下来. 导入 UI 界面相关的 PyQt5 第三方模块库. from PyQt5.QtCore import * from PyQt5.QtWidgets import * from PyQt5.QtGui import * 若是使用PyQt5的版本是5.10.1以上,则需要单独安

随机推荐