Python中装饰器高级用法详解

在Python中,装饰器一般用来修饰函数,实现公共功能,达到代码复用的目的。在函数定义前加上@xxxx,然后函数就注入了某些行为,很神奇!然而,这只是语法糖而已。

场景

假设,有一些工作函数,用来对数据做不同的处理:

def work_bar(data):
  pass

def work_foo(data):
  pass

我们想在函数调用前/后输出日志,怎么办?

傻瓜解法

logging.info('begin call work_bar')
work_bar(1)
logging.info('call work_bar done')

如果有多处代码调用呢?想想就怕!

函数包装

傻瓜解法无非是有太多代码冗余,每次函数调用都要写一遍logging。可以把这部分冗余逻辑封装到一个新函数里:

def smart_work_bar(data):
  logging.info('begin call: work_bar')
  work_bar(data)
  logging.info('call doen: work_bar')

这样,每次调用smart_work_bar即可:

smart_work_bar(1)

# ...

smart_work_bar(some_data)

通用闭包

看上去挺完美……然而,当work_foo也有同样的需要时,还要再实现一遍smart_work_foo吗?这样显然不科学呀!

别急,我们可以用闭包:

def log_call(func):
  def proxy(*args, **kwargs):
    logging.info('begin call: {name}'.format(name=func.func_name))
    result = func(*args, **kwargs)
    logging.info('call done: {name}'.format(name=func.func_name))
    return result
  return proxy

这个函数接收一个函数对象(被代理函数)作为参数,返回一个代理函数。调用代理函数时,先输出日志,然后调用被代理函数,调用完成后再输出日志,最后返回调用结果。这样,不就达到通用化的目的了吗?——对于任意被代理函数func,log_call均可轻松应对。

smart_work_bar = log_call(work_bar)
smart_work_foo = log_call(work_foo)

smart_work_bar(1)
smart_work_foo(1)

# ...

smart_work_bar(some_data)
smart_work_foo(some_data)

第1行中,log_call接收参数work_bar,返回一个代理函数proxy,并赋给smart_work_bar。第4行中,调用smart_work_bar,也就是代理函数proxy,先输出日志,然后调用func也就是work_bar,最后再输出日志。注意到,代理函数中,func与传进去的work_bar对象紧紧关联在一起了,这就是闭包。

再提一下,可以覆盖被代理函数名,以smart_为前缀取新名字还是显得有些累赘:

work_bar = log_call(work_bar)
work_foo = log_call(work_foo)

work_bar(1)
work_foo(1)

语法糖

先来看看以下代码:

def work_bar(data):
  pass
work_bar = log_call(work_bar)

def work_foo(data):
  pass
work_foo = log_call(work_foo)

虽然代码没有什么冗余了,但是看是去还是不够直观。这时候,语法糖来了~~~

@log_call
def work_bar(data):
  pass

因此,注意一点(划重点啦),这里@log_call的作用只是:告诉Python编译器插入代码work_bar = log_call(work_bar)。

求值装饰器

先来猜猜装饰器eval_now有什么作用?

def eval_now(func):
  return func()

看上去好奇怪哦,没有定义代理函数,算装饰器吗?

@eval_now
def foo():
  return 1

print foo

这段代码输出1,也就是对函数进行调用求值。那么到底有什么用呢?直接写foo = 1不行么?在这个简单的例子,这么写当然可以啦。来看一个更复杂的例子——初始化一个日志对象:

# some other code before...

# log format
formatter = logging.Formatter(
  '[%(asctime)s] %(process)5d %(levelname) 8s - %(message)s',
  '%Y-%m-%d %H:%M:%S',
)

# stdout handler
stdout_handler = logging.StreamHandler(sys.stdout)
stdout_handler.setFormatter(formatter)
stdout_handler.setLevel(logging.DEBUG)

# stderr handler
stderr_handler = logging.StreamHandler(sys.stderr)
stderr_handler.setFormatter(formatter)
stderr_handler.setLevel(logging.ERROR)

# logger object
logger = logging.Logger(__name__)
logger.setLevel(logging.DEBUG)
logger.addHandler(stdout_handler)
logger.addHandler(stderr_handler)

# again some other code after...

用eval_now的方式:

# some other code before...

@eval_now
def logger():
  # log format
  formatter = logging.Formatter(
    '[%(asctime)s] %(process)5d %(levelname) 8s - %(message)s',
    '%Y-%m-%d %H:%M:%S',
  )

  # stdout handler
  stdout_handler = logging.StreamHandler(sys.stdout)
  stdout_handler.setFormatter(formatter)
  stdout_handler.setLevel(logging.DEBUG)

  # stderr handler
  stderr_handler = logging.StreamHandler(sys.stderr)
  stderr_handler.setFormatter(formatter)
  stderr_handler.setLevel(logging.ERROR)

  # logger object
  logger = logging.Logger(__name__)
  logger.setLevel(logging.DEBUG)
  logger.addHandler(stdout_handler)
  logger.addHandler(stderr_handler)

  return logger

# again some other code after...

两段代码要达到的目的是一样的,但是后者显然更清晰,颇有代码块的风范。更重要的是,函数调用在局部名字空间完成初始化,避免临时变量(如formatter等)污染外部的名字空间(比如全局)。

带参数装饰器

定义一个装饰器,用于记录慢函数调用:

def log_slow_call(func):
  def proxy(*args, **kwargs):
    start_ts = time.time()
    result = func(*args, **kwargs)
    end_ts = time.time()

    seconds = start_ts - end_ts
    if seconds > 1:
    logging.warn('slow call: {name} in {seconds}s'.format(
      name=func.func_name,
      seconds=seconds,
    ))

    return result

  return proxy

第3、5行分别在函数调用前后采样当前时间,第7行计算调用耗时,耗时大于一秒输出一条警告日志。

@log_slow_call
def sleep_seconds(seconds):
  time.sleep(seconds)

sleep_seconds(0.1) # 没有日志输出

sleep_seconds(2)  # 输出警告日志

然而,阈值设置总是要视情况决定,不同的函数可能会设置不同的值。如果阈值有办法参数化就好了:

def log_slow_call(func, threshold=1):
  def proxy(*args, **kwargs):
    start_ts = time.time()
    result = func(*args, **kwargs)
    end_ts = time.time()

    seconds = start_ts - end_ts
    if seconds > threshold:
    logging.warn('slow call: {name} in {seconds}s'.format(
      name=func.func_name,
      seconds=seconds,
    ))

    return result

  return proxy

然而,@xxxx语法糖总是以被装饰函数为参数调用装饰器,也就是说没有机会传递threshold参数。怎么办呢?——用一个闭包封装threshold参数:

def log_slow_call(threshold=1):
  def decorator(func):
    def proxy(*args, **kwargs):
      start_ts = time.time()
      result = func(*args, **kwargs)
      end_ts = time.time()

      seconds = start_ts - end_ts
      if seconds > threshold:
      logging.warn('slow call: {name} in {seconds}s'.format(
        name=func.func_name,
        seconds=seconds,
      ))

      return result

    return proxy

  return decorator

@log_slow_call(threshold=0.5)
def sleep_seconds(seconds):
  time.sleep(seconds)

这样,log_slow_call(threshold=0.5)调用返回函数decorator,函数拥有闭包变量threshold,值为0.5。decorator再装饰sleep_seconds。

采用默认阈值,函数调用还是不能省略:

@log_slow_call()
def sleep_seconds(seconds):
  time.sleep(seconds)

处女座可能会对第一行这对括号感到不爽,那么可以这样改进:

def log_slow_call(func=None, threshold=1):
  def decorator(func):
    def proxy(*args, **kwargs):
      start_ts = time.time()
      result = func(*args, **kwargs)
      end_ts = time.time()

      seconds = start_ts - end_ts
      if seconds > threshold:
      logging.warn('slow call: {name} in {seconds}s'.format(
        name=func.func_name,
        seconds=seconds,
      ))

      return result

    return proxy

  if func is None:
    return decorator
  else:
    return decorator(func)

这种写法兼容两种不同的用法,用法A默认阈值(无调用);用法B自定义阈值(有调用)。

# Case A
@log_slow_call
def sleep_seconds(seconds):
  time.sleep(seconds)

# Case B
@log_slow_call(threshold=0.5)
def sleep_seconds(seconds):
  time.sleep(seconds)

用法A中,发生的事情是log_slow_call(sleep_seconds),也就是func参数是非空的,这是直接调decorator进行包装并返回(阈值是默认的)。

用法B中,先发生的是log_slow_call(threshold=0.5),func参数为空,直接返回新的装饰器decorator,关联闭包变量threshold,值为0.5;然后,decorator再装饰函数sleep_seconds,即decorator(sleep_seconds)。注意到,此时threshold关联的值是0.5,完成定制化。

你可能注意到了,这里最好使用关键字参数这种调用方式——使用位置参数会很丑陋:

# Case B-
@log_slow_call(None, 0.5)
def sleep_seconds(seconds):
  time.sleep(seconds)

当然了,函数调用尽量使用关键字参数是一种极佳实践,含义清晰,在参数很多的情况下更是如此。

智能装饰器

上节介绍的写法,嵌套层次较多,如果每个类似的装饰器都用这种方法实现,还是比较费劲的(脑子不够用),也比较容易出错。

假设有一个智能装饰器smart_decorator,修饰装饰器log_slow_call,便可获得同样的能力。这样,log_slow_call定义将变得更清晰,实现起来也更省力啦:

@smart_decorator
def log_slow_call(func, threshold=1):
  def proxy(*args, **kwargs):
    start_ts = time.time()
    result = func(*args, **kwargs)
    end_ts = time.time()

    seconds = start_ts - end_ts
    if seconds > threshold:
    logging.warn('slow call: {name} in {seconds}s'.format(
      name=func.func_name,
      seconds=seconds,
    ))

    return result

  return proxy

脑洞开完,smart_decorator如何实现呢?其实也简单:

def smart_decorator(decorator):

  def decorator_proxy(func=None, **kwargs):
    if func is not None:
      return decorator(func=func, **kwargs)

    def decorator_proxy(func):
      return decorator(func=func, **kwargs)

    return decorator_proxy

  return decorator_proxy

smart_decorator实现了以后,设想就成立了!这时,log_slow_call,就是decorator_proxy(外层),关联的闭包变量decorator是本节最开始定义的log_slow_call(为了避免歧义,称为real_log_slow_call)。log_slow_call支持以下各种用法:

# Case A
@log_slow_call
def sleep_seconds(seconds):
  time.sleep(seconds)

用法A中,执行的是decorator_proxy(sleep_seconds)(外层),func非空,kwargs为空;直接执行decorator(func=func, **kwargs),即real_log_slow_call(sleep_seconds),结果是关联默认参数的proxy。

# Case B
# Same to Case A
@log_slow_call()
def sleep_seconds(seconds):
  time.sleep(seconds)

用法B中,先执行decorator_proxy(),func及kwargs均为空,返回decorator_proxy对象(内层);再执行decorator_proxy(sleep_seconds)(内层);最后执行decorator(func, **kwargs),等价于real_log_slow_call(sleep_seconds),效果与用法A一致。

# Case C
@log_slow_call(threshold=0.5)
def sleep_seconds(seconds):
  time.sleep(seconds)

用法C中,先执行decorator_proxy(threshold=0.5),func为空但kwargs非空,返回decorator_proxy对象(内层);再执行decorator_proxy(sleep_seconds)(内层);最后执行decorator(sleep_seconds, **kwargs),等价于real_log_slow_call(sleep_seconds, threshold=0.5),阈值实现自定义!

(0)

相关推荐

  • 深入理解python中的闭包和装饰器

    python中的闭包从表现形式上定义(解释)为:如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure). 以下说明主要针对 python2.7,其他版本可能存在差异. 也许直接看定义并不太能明白,下面我们先来看一下什么叫做内部函数: def wai_hanshu(canshu_1): def nei_hanshu(canshu_2): # 我在函数内部有定义了一个函数 return canshu_1*canshu_2 return

  • 巧用Python装饰器 免去调用父类构造函数的麻烦

    先看一段代码: 复制代码 代码如下: class T1(threading.Thread): def __init__(self, a, b, c): super(T1, self).__init__() self.a = a self.b = b self.c = c def run(self): print self.a, self.b, self.c 代码定义了一个继承自threading.Thread的class,看这句 super(T1, self).__init__() 也有些人喜欢

  • Python装饰器的函数式编程详解

    Python的装饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西.虽然好像,他们要干的事都很相似--都是想要对一个已有的模块做一些"修饰工作",所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能)侵入到原有的模块中的代码里去.但是OO的Decorator简直就是一场恶梦,不信你就去看看wikipedia上的词条

  • python装饰器使用方法实例

    什么是python的装饰器? 网络上的定义:装饰器就是一函数,用来包装函数的函数,用来修饰原函数,将其重新赋值给原来的标识符,并永久的丧失原函数的引用. 最能说明装饰器的例子如下: 复制代码 代码如下: #-*- coding: UTF-8 -*-import time def foo():    print 'in foo()' # 定义一个计时器,传入一个,并返回另一个附加了计时功能的方法def timeit(func): # 定义一个内嵌的包装函数,给传入的函数加上计时功能的包装    d

  • 详解Python中的装饰器、闭包和functools的教程

    装饰器(Decorators) 装饰器是这样一种设计模式:如果一个类希望添加其他类的一些功能,而不希望通过继承或是直接修改源代码实现,那么可以使用装饰器模式.简单来说Python中的装饰器就是指某些函数或其他可调用对象,以函数或类作为可选输入参数,然后返回函数或类的形式.通过这个在Python2.6版本中被新加入的特性可以用来实现装饰器设计模式. 顺便提一句,在继续阅读之前,如果你对Python中的闭包(Closure)概念不清楚,请查看本文结尾后的附录,如果没有闭包的相关概念,很难恰当的理解P

  • Python中的装饰器用法详解

    本文实例讲述了Python中的装饰器用法.分享给大家供大家参考.具体分析如下: 这里还是先由stackoverflow上面的一个问题引起吧,如果使用如下的代码: 复制代码 代码如下: @makebold @makeitalic def say():    return "Hello" 打印出如下的输出: <b><i>Hello<i></b> 你会怎么做?最后给出的答案是: 复制代码 代码如下: def makebold(fn):    

  • Python中的各种装饰器详解

    Python装饰器,分两部分,一是装饰器本身的定义,一是被装饰器对象的定义. 一.函数式装饰器:装饰器本身是一个函数. 1.装饰函数:被装饰对象是一个函数 [1]装饰器无参数: a.被装饰对象无参数: 复制代码 代码如下: >>> def test(func):     def _test():         print 'Call the function %s().'%func.func_name         return func()     return _test >

  • 介绍Python的@property装饰器的用法

    在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改: s = Student() s.score = 9999 这显然不合逻辑.为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,这样,在set_score()方法里,就可以检查参数: class Student(object): def get_score(self): return self._score def set_s

  • python 装饰器功能以及函数参数使用介绍

    简单的说:装饰器主要作用就是对函数进行一些修饰,它的出现是在引入类方法和静态方法的时候为了定义静态方法出现的.例如为了把foo()函数声明成一个静态函数 复制代码 代码如下: class Myclass(object): def staticfoo(): ............ ............ staticfoo = staticmethod(staticfoo) 可以用装饰器的方法实现: 复制代码 代码如下: class Myclass(object): @staticmethod

  • Python中装饰器高级用法详解

    在Python中,装饰器一般用来修饰函数,实现公共功能,达到代码复用的目的.在函数定义前加上@xxxx,然后函数就注入了某些行为,很神奇!然而,这只是语法糖而已. 场景 假设,有一些工作函数,用来对数据做不同的处理: def work_bar(data): pass def work_foo(data): pass 我们想在函数调用前/后输出日志,怎么办? 傻瓜解法 logging.info('begin call work_bar') work_bar(1) logging.info('cal

  • Python函数装饰器的使用详解

    目录 装饰器 装饰器的定义 装饰器的意义 装饰器的使用 无参装饰器 有参装饰器 实例练习 总结 装饰器 装饰器的定义 关于装饰器的定义,我们先来看一段github上大佬的定义: Function decorators are simply wrappers to existing functions.In the context of design patterns,decorators dynamically alter the functionality of a function, met

  • Python3网络爬虫中的requests高级用法详解

    本节我们再来了解下 Requests 的一些高级用法,如文件上传,代理设置,Cookies 设置等等. 1. 文件上传 我们知道 Reqeuests 可以模拟提交一些数据,假如有的网站需要我们上传文件,我们同样可以利用它来上传,实现非常简单,实例如下: import requests files = {'file': open('favicon.ico', 'rb')} r = requests.post('http://httpbin.org/post', files=files) print

  • python re模块的高级用法详解

    总结 以上所述是小编给大家介绍的python re模块的高级用法详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的.在此也非常感谢大家对我们网站的支持!

  • python中for in的用法详解

    for in 说明:也是循环结构的一种,经常用于遍历字符串.列表,元组,字典等 格式: for x in y:     循环体 执行流程:x依次表示y中的一个元素,遍历完所有元素循环结束. 例1:遍历字符串 s = 'I love you more than i can say' for i in s: print(i) 例2:遍历列表 l = ['鹅鹅鹅', '曲项向天歌', '锄禾日当午', '春种一粒粟'] for i in l: print(i) # 可以获取下表,enumerate每次

  • Python函数装饰器实现方法详解

    本文实例讲述了Python函数装饰器实现方法.分享给大家供大家参考,具体如下: 编写函数装饰器 这里主要介绍编写函数装饰器的相关内容. 跟踪调用 如下代码定义并应用一个函数装饰器,来统计对装饰的函数的调用次数,并且针对每一次调用打印跟踪信息. class tracer: def __init__(self,func): self.calls = 0 self.func = func def __call__(self,*args): self.calls += 1 print('call %s

  • Python类装饰器实现方法详解

    本文实例讲述了Python类装饰器.分享给大家供大家参考,具体如下: 编写类装饰器 类装饰器类似于函数装饰器的概念,但它应用于类,它们可以用于管理类自身,或者用来拦截实例创建调用以管理实例. 单体类 由于类装饰器可以拦截实例创建调用,所以它们可以用来管理一个类的所有实例,或者扩展这些实例的接口. 下面的类装饰器实现了传统的单体编码模式,即最多只有一个类的一个实例存在. instances = {} # 全局变量,管理实例 def getInstance(aClass, *args): if aC

  • Python pytest装饰器总结(实例详解)

    几个常用装饰器 pytest.ini 配置文件 例子: [pytest] addopts = -v -s --html=py_test/scripts/report/report.html -p no:warnings --reruns=10 testpaths = ./py_test/scripts python_files= test_rerun.py python_classes = Test* python_function = test* xfail_strict = true add

  • python中的lambda表达式用法详解

    本文实例讲述了python中的lambda表达式用法.分享给大家供大家参考,具体如下: 这里来为大家介绍一下lambda函数. lambda 函数是一种快速定义单行的最小函数,是从 Lisp 借用来的,可以用在任何需要函数的地方 .下面的例子比较了传统的函数定义def与lambda定义方式: >>> def f ( x ,y): ... return x * y ... >>> f ( 2,3 ) 6 >>> g = lambda x ,y: x *

  • Python中 map()函数的用法详解

    map( )函数在算法题目里面经常出现,map( )会根据提供的函数对指定序列做映射,在写返回值等需要转换的时候比较常用. 关于映射map,可以把[ ]转成字符串的话,就不需要用循环打印字符串输出结果这种比较旧的方式. 在Python 3中的例子如下: 也可以用匿名函数来计算幂计算: map(lambda x:x**2,[1,2,3,4,5]) 也可以用来规范输出: name_list={'tony','cHarLIE','rachAEl'} def format_name(s): ss=s[0

随机推荐