Python调用Matplotlib绘制振动图、箱型图和提琴图

目录
  • Matplotlib介绍
  • 振动图
  • 箱型图
  • 提琴图

Matplotlib介绍

Matplotlib 是一款用于数据可视化的 Python 软件包,支持跨平台运行,它能够根据 NumPy  ndarray 数组来绘制 2D 图像,它使用简单、代码清晰易懂,深受广大技术爱好者喜爱。

NumPy 是 Python 科学计算的软件包,ndarray 则是 NumPy 提供的一种数组结构。

Matplotlib 由 John D. Hunter 在 2002 年开始编写, 2003 年 Matplotlib 发布了第一个版本,并加入了 BSD 开源软件组织。Matplotlib 1.4 是最后一个支持 Python 2 的版本,它的最新版本 3.1.1 已于 2019 年 7 月 1 日发布。

Matplotlib 提供了一个套面向绘图对象编程的 API 接口,能够很轻松地实现各种图像的绘制,并且它可以配合 Python GUI 工具(如 PyQt、Tkinter 等)在应用程序中嵌入图形。同时 Matplotlib 也支持以脚本的形式嵌入到 IPython shell、Jupyter 笔记本、web 应用服务器中使用。

振动图

振动图也叫磁场图,或量场图,其图像的表现形式是一组矢量箭头,其数学含义是在点 (x,y) 处具有分向量 (u,v)。

Matplotlib 提供绘制量场图的函数,如下所示:

quiver(x,y,u,v)

上述函数表示,在指定的 (x,y) 坐标上以箭头的形式绘制向量,参数说明如下:

参数 说明
x 一维、二维数组或者序列,表示箭头位置的x坐标。
y 一维、二维数组或者序列,表示箭头位置的y坐标。
u 一维、二维数组或者序列,表示箭头向量的x分量。
v 一维、二维数组或者序列,表示箭头向量的y分量。
c 一维、二维数组或者序列,表示箭头颜色。

以下示例,绘制了一个简单的振动图:

import matplotlib.pyplot as plt
import numpy as np
x,y = np.meshgrid(np.arange(-2, 2, 0.2), np.arange(-2, 2, 0.25))
z = x*np.exp(-x**2 - y**2)
#计算数组中元素的梯度
v, u = np.gradient(z, 0.2, 0.2)
fig, ax = plt.subplots()
q = ax.quiver(x,y,u,v)
plt.show()

上述代码执行后,输出结果如下:

图1:振动示例图

箱型图

箱型图(也称为盒须图)于 1977 年由美国著名统计学家约翰·图基(John Tukey)发明。它能显示出一组数据的最大值、最小值、中位数、及上下四分位数。

在箱型图中,我们从上四分位数到下四分位数绘制一个盒子,然后用一条垂直触须(形象地称为“盒须”)穿过盒子的中间。上垂线延伸至上边缘(最大值),下垂线延伸至下边缘(最小值)。箱型图结构如下所示:

图1:箱型如结构图

 首先准备创建箱型图所需数据:您可以使用numpy.random.normal()函数来创建一组基于正态分布的随机数据,该函数有三个参数,分别是正态分布的平均值、标准差以及期望值的数量。如下所示:

#利用随机数种子使每次生成的随机数相同
np.random.seed(10)
collectn_1 = np.random.normal(100, 10, 200)
collectn_2 = np.random.normal(80, 30, 200)
collectn_3 = np.random.normal(90, 20, 200)
collectn_4 = np.random.normal(70, 25, 200)
data_to_plot=[collectn_1,collectn_2,collectn_3,collectn_4]

然后用 data_to_plot 变量指定创建箱型图所需的数据序列,最后用 boxplot() 函数绘制箱型图,如下所示:

fig = plt.figure()
#创建绘图区域
ax = fig.add_axes([0,0,1,1])
#创建箱型图
bp = ax.boxplot(data_to_plot)
plt.show()

上述代码执行后,输出结果如下:

图2:箱型图输出结果

提琴图

小提琴图(Violin Plot)是用来展示数据分布状态以及概率密度的图表。这种图表结合了箱形图和密度图的特征。小提琴图跟箱形图类似,不同之处在于小提琴图还显示数据在不同数值下的概率密度。

小提琴图使用核密度估计(KDE)来计算样本的分布情况,图中要素包括了中位数、四分位间距以及置信区间。在数据量非常大且不方便一一展示的时候,小提琴图特别适用。

概率密度估计、置信区间、四分位间距都属于统计学中的概念,可自行查阅,这里不做说明。

小提琴图比箱型图能提供了更多的信息。虽然箱型图显示了均值、中位数和上、下四分位数等统计信息,但是小提琴图却显示了数据的完整分布情况,这更利于数据的分析与比对。下面是小提琴图的使用示例:

import matplotlib.pyplot as plt
np.random.seed(10)
collectn_1 = np.random.normal(100, 10, 200)
collectn_2 = np.random.normal(80, 30, 200)
collectn_3 = np.random.normal(90, 20, 200)
collectn_4 = np.random.normal(70, 25, 200)
#创建绘制小提琴图的数据序列
data_to_plot = [collectn_1, collectn_2, collectn_3, collectn_4]
#创建一个画布
fig = plt.figure()
#创建一个绘图区域
ax = fig.add_axes([0,0,1,1])
# 创建一个小提琴图
bp = ax.violinplot(data_to_plot)
plt.show()

输出结果如下:

图1:小提琴图绘制

以上就是Python调用Matplotlib绘制振动图、箱型图和提琴图的详细内容,更多关于Python Matplotlib绘制振动图 箱型图 提琴图的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python matplotlib如何绘制各种流线图

    目录 前言 流线图概述 什么是流线图? 流线图应用场景 获取流线图方法 流线图属性 设置流线图密度 设置流线宽度 设置流线颜色 设置流线缩放 设置流线颜色系 绘制流线图步骤 小试牛刀 总结 前言 在Python关于绘图,Mlab提供开源的matplotlib模块,不仅可以绘制折线图.柱状图.散点图等常规图外,还支持绘制量场图.频谱图.提琴图.箱型图等特殊图,例举往期文章可前往查看详情. 我们日常生活中经常会关注天气预报,在换季的时候,播报员会讲解气流流动情况.在天气预报过程中,气象专家们会根据流

  • Python利用matplotlib实现饼图绘制

    目录 前言 1. 等高线图概述 什么是饼图? 饼图常用场景 绘制等饼图步骤 案例展示 2. 饼图属性 设置饼图的颜色 设置标签 设置突出部分 设置填入百分比数值 饼图旋转 设置阴影 3. 调整饼图的大小 4. 添加图例 5. 镂空饼图 总结 前言 众所周知,matplotlib.pyplot 提供绘制不同表格绘制方法,如使用plot()方法绘制折线,bar()绘制柱 在matplotlib.pyplot 中还有一种图表用于直观表示占比情况的饼图,在matplotlib官网上也列举出非常多关于饼图

  • Python+matplotlib实现量场图的绘制

    目录 复习回顾 1. 量场图概述 什么是量场图? 量场图使用场景 绘制量场图方法 2. 量场图属性 设置颜色 设置透明度 设置向量箭头尺寸 设置坐标中向量箭头位置 设置向量箭头宽度 3. 绘制量场图步骤 4. 小试牛刀 总结 复习回顾 matplotlib 是基于Python语言的开源项目,pyplot提供一系列绘制2D图形的方法.随着版本的迭代,matplotlib 模块也支持绘制3D图形mplot3d工具包,制作动态图Animation类,对于动态图的制作也可以使用pyplot交互模式进行绘

  • Python利用 matplotlib 绘制直方图

    目录 1. 直方图概述 1.1什么是直方图? 1.2直方图使用场景 1.3直方图绘制步骤 1.4案例展示 2. 直方图属性 2.1设置颜色 2.2设置长条形数目 2.3设置透明度 2.4设置样式 3. 添加折线直方图 4. 堆叠直方图 5. 不等距直方图 6. 多类直方图 复习回顾: 经过前面对 matplotlib 模块从底层架构.基本绘制步骤等学习,我们已经学习了折线图.柱状图的绘制方法. matplotlib 模块基础:对matplotlib 模块常用方法进行学习 matplotlib 模

  • Python用 matplotlib 绘制柱状图

    目录 1. 柱状图概述 1.1什么是柱状图 1.2柱状图使用场景 1.3柱状图绘制步骤 1.3案例展示 2. 柱状图属性 2.1柱状体颜色填充 2.2状描边设置 2.3状体边框宽度 2.4刻度标签 3. 堆叠柱状图 4. 并列柱状图 5. 水平柱状图 6. 添加折线柱状图 7. 正负柱状图 复习回顾: Python 为数据展示提供了大量优秀的功能包,其中 matplotlib 模块可以方便绘制制作折线图.柱状图.散点图等高质量的数据包. 关于 matplotlib 模块,我们前期已经对matpl

  • Python+matplotlib实现绘制等高线图示例详解

    目录 前言 1. 等高线图概述 什么是等高线图? 等高线图常用场景 绘制等高线图步骤 案例展示 2. 等高线图属性 设置等高线颜色 设置等高线透明度 设置等高线颜色级别 设置等高线宽度 设置等高线样式 3. 显示轮廓标签 4. 填充颜色 5. 添加颜色条说明 总结 前言 我们在往期对matplotlib.pyplot()方法学习,到现在我们已经会绘制折线图.柱状图.散点等常规的图表啦(往期的内容如下,大家可以方便查看往期内容) Python matplotlib底层原理解析 Python利用 m

  • Python matplotlib 绘制散点图详解建议收藏

    目录 前言 1. 散点图概述 什么是散点图? 散点图使用场景 绘制散点图步骤 案例展示  2. 散点图属性 设置散点大小 设置散点颜色 设置散点样式 设置透明度 设置散点边框 3. 添加折线散点图 4. 多类型散点图 5. 颜色条散点图 6. 曲线散点图 总结 前言 我们在matplotlib模块学习中,发现有常用的反映数据变化的折线图,对比数据类型差异的柱状图和反应数据频率分布情况的直方图. 其实在数据统计图表中,有一种图表是散列点分布在坐标中,反应数据随着自变量变化的趋势. 本期,我们将详细

  • Python调用Matplotlib绘制振动图、箱型图和提琴图

    目录 Matplotlib介绍 振动图 箱型图 提琴图 Matplotlib介绍 Matplotlib 是一款用于数据可视化的 Python 软件包,支持跨平台运行,它能够根据 NumPy  ndarray 数组来绘制 2D 图像,它使用简单.代码清晰易懂,深受广大技术爱好者喜爱. NumPy 是 Python 科学计算的软件包,ndarray 则是 NumPy 提供的一种数组结构. Matplotlib 由 John D. Hunter 在 2002 年开始编写, 2003 年 Matplot

  • python调用Matplotlib绘制分布点并且添加标签

    本文实例为大家分享了Python调用Matplotlib绘制分布点添加标签的具体代码,供大家参考,具体内容如下 添加标签的目的 代码 截图 目的 上文介绍了根据图像的大小作为坐标来绘制分布点图.老大又给了我一个任务,我绘制完,每次将图保存,发给她,但是图片中的点的坐标是不能显示了,所以她让我给每个点添加个label,而且label是该点的横纵坐标. 代码 import matplotlib.pyplot as plt from numpy.random import rand import nu

  • python调用Matplotlib绘制分布点图

    Python调用Matplotlib代码绘制分布点,供大家参考,具体内容如下 绘制点图的目的 Matplotlib简介 代码 截图 1.绘制点图的目的 我们实验室正在做关于人脸识别的项目,其中在人脸检测后,会有些误检的图片,但是其中就有很多不符合的.很明显的是从图片大小,就可以过滤掉一部分.老大交给我的工作,就是通过绘制图片width,height的分布图,来找到一个合理的阈值. 2.Matlablib简介 Matplotlib是一个Python的图形框架 下面是官网的例子 Matplotlib

  • Python利用matplotlib.pyplot.boxplot()绘制箱型图实例代码

    目录 一.matplotlib.pyplot.boxplot()语法 二.绘制箱型图 ①绘制简单箱型图 ②各个参数绘制箱型图 (1)notch参数(bool值,是否凹口的形式展现箱线图,默认值False非凹口) (2)sym(str,指定异常点的形状,默认为+号显示) (3)vert参数(bool值,是否需要将箱线图垂直摆放,默认True垂直摆放) (4)widths参数(float值,指定箱线图的宽度,默认值:0.5) (5)patch_artist(bool值,是否填充箱体颜色,默认值:Fa

  • Python利用matplotlib绘制折线图的新手教程

    前言 matplotlib是Python中的一个第三方库.主要用于开发2D图表,以渐进式.交互式的方式实现数据可视化,可以更直观的呈现数据,使数据更具说服力. 一.安装matplotlib pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple 二.matplotlib图像简介 matplotlib的图像分为三层,容器层.辅助显示层和图像层. 1. 容器层主要由Canvas.Figure.Axes组成. Canvas位

  • python 用matplotlib绘制折线图详情

    目录 1. 折线图概述 1.1什么是折线图? 1.2折线图使用场景 1.3绘制折线图步骤 1.4案例展示 2. 折线2D属性 2.1linestyle:折线样式 2.2color:折线颜色 2.3marker:坐标值标记 2.4fillstyle:标记填充方法 2.5linewidth(lw): 直线宽度 3. 坐标管理 3.1坐标轴名字设置 3.2坐标轴刻度设置 3.3坐标轴位置设置 3.4指定坐标值标注 4. 多条折线展示图 5. 图列管理 复习回顾: 众所周知,matplotlib 是一款

  • python使用matplotlib绘制雷达图

    本文实例为大家分享了python使用matplotlib绘制雷达图的具体代码,供大家参考,具体内容如下 示例代码: # encoding: utf-8 import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['KaiTi'] # 显示中文 labels = np.array([u'总场次', u'吃鸡数', u'前十数',u'总击杀']) #

  • python使用matplotlib绘制折线图的示例代码

    示例代码如下: #!/usr/bin/python #-*- coding: utf-8 -*- import matplotlib.pyplot as plt # figsize - 图像尺寸(figsize=(10,10)) # facecolor - 背景色(facecolor="blue") # dpi - 分辨率(dpi=72) fig = plt.figure(figsize=(10,10),facecolor="blue") #figsize默认为4,

  • Python使用Matplotlib绘制甘特图的实践

    目录 1.引言 2.举个栗子 3.数据预处理 4.绘制甘特图 5.添加颜色 6.添加透明度 7.再优化 8. 总结 1.引言 甘特图已经拥有 100 多年的历史,这种可视化图表对项目管理非常有用. Henry Gantt 为了分析已经完成的项目创建了甘特图,他最初设计这个可视化工具主要用来衡量员工的工作效率并从中识别表现不佳的员工.经过多年的发展,甘特图已经发展成项目规划和跟踪的必备工具. 本文主要介绍如何使用Matplotlib来绘制甘特图,并不断优化我们的可视化效果. 闲话少说,我们直接开始

  • Python利用matplotlib绘制圆环图(环形图)的实战案例

    目录 一.概念介绍 二.数据展示 三.图像绘制 四.参数解释 (1) wedgeprops是我们绘图时的参数字典. (2) startangle是第一个数据起画点. (3) plt.text (4) 可以绘制如示例图一样的colorbar,或者legend吗? 总结 一.概念介绍 圆环图(Donut Chart),又称为环形图,甜甜圈图.它从饼图变形而来,单环的作用上与饼图相似,用于展示定性数据中小类占大类的比例关系. Q: 那既然都有饼图了,为什么还要圆环图呢? ① 从空间利用效果上,饼图的t

随机推荐