在Pytorch中计算卷积方法的区别详解(conv2d的区别)
在二维矩阵间的运算:
class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
对由多个特征平面组成的输入信号进行2D的卷积操作。详解
torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
在由多个输入平面组成的输入图像上应用2D卷积,这个操作其实和上面的操作是一样的,只不过这个操作多用于计算一组卷积核对于输入的卷积结果,而上面的那条代码更多的则是用在定义网络中去。详解
以上这篇在Pytorch中计算卷积方法的区别详解(conv2d的区别)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
Pytorch之卷积层的使用详解
1.简介(torch.nn下的) 卷积层主要使用的有3类,用于处理不同维度的数据 参数 Parameters: in_channels(int) – 输入信号的通道 out_channels(int) – 卷积产生的通道 kerner_size(int or tuple) - 卷积核的尺寸 stride(int or tuple, optional) - 卷积步长 padding (int or tuple, optional)- 输入的每一条边补充0的层数 dilation(int or tu
-
pytorch 自定义卷积核进行卷积操作方式
一 卷积操作:在pytorch搭建起网络时,大家通常都使用已有的框架进行训练,在网络中使用最多就是卷积操作,最熟悉不过的就是 torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 通过上面的输入发现想自定义自己的卷积核,比如高斯核,发现是行不通的,因为上面的参数里面只有卷积核尺寸,而权值weight是通过梯度一直更新的,是不确定的.
-
pytorch中的卷积和池化计算方式详解
TensorFlow里面的padding只有两个选项也就是valid和same pytorch里面的padding么有这两个选项,它是数字0,1,2,3等等,默认是0 所以输出的h和w的计算方式也是稍微有一点点不同的:tf中的输出大小是和原来的大小成倍数关系,不能任意的输出大小:而nn输出大小可以通过padding进行改变 nn里面的卷积操作或者是池化操作的H和W部分都是一样的计算公式:H和W的计算 class torch.nn.MaxPool2d(kernel_size, stride=Non
-
PyTorch中反卷积的用法详解
pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True) class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, b
-
在Pytorch中计算卷积方法的区别详解(conv2d的区别)
在二维矩阵间的运算: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 对由多个特征平面组成的输入信号进行2D的卷积操作.详解 torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1)
-
对Pytorch中nn.ModuleList 和 nn.Sequential详解
简而言之就是,nn.Sequential类似于Keras中的贯序模型,它是Module的子类,在构建数个网络层之后会自动调用forward()方法,从而有网络模型生成.而nn.ModuleList仅仅类似于pytho中的list类型,只是将一系列层装入列表,并没有实现forward()方法,因此也不会有网络模型产生的副作用. 需要注意的是,nn.ModuleList接受的必须是subModule类型,例如: nn.ModuleList( [nn.ModuleList([Conv(inp_dim
-
对numpy中的where方法嵌套使用详解
如同for循环一样,numpy中的where方法可以实现嵌套功能.这是简化嵌套式矩阵逻辑的一个很好的方法. 假设有一个矩阵,需要把小于0的元素改成-1,大于0的元素改成1,而等于0的时候不做修改. 那么,对应的代码示范如下: #!/usr/bin/python import numpy as np data = np.random.randn(4,5) data1 =np.where(data > 0,1, np.where(data <0,-1,0)) print("dataval
-
java 正则,object中两个方法的使用(详解)
正则: "."和"\" "."点儿,在正则表达式中表示任意一个字符. "\"在正则表达式中是转意字符,当我们需要描述一个已经被正则表达式使用的特殊字符时,我们就可以通过使用"\"将其转变为原本的意思. "\"在正则表达式中也有一些预定义的特殊内容: \d:表示任意一个数字 \w:表示任意一个单词字符(只能是 数字,字母,下划线) \s:表示任意一个空白字符(\t \r \n \f \x0
-
Java8新特性之接口中的默认方法和静态方法详解
一.前言 Java 8 引入了默认方法以及可以在接口中定义的静态方法. 默认方法是一个普通的 java 方法,但以 default 关键字开头,静态方法像往常一样用 static 关键字声明. 二.为什么在 Java 接口中使用默认方法? 为什么java在接口中引入了默认方法. 假设一个拖拉机制造公司发布了操作拖拉机的标准接口,如如何挂挡或停车等. 开发者已经开发了不同类型的拖拉机来实现标准的拖拉机接口. 如果公司在其标准接口中增加了新的功能,如如何跳动拖拉机? 开发者需要对他们的类进行修改以定
-
Python中的特殊方法以及应用详解
前言 Python 中的特殊方法主要是为了被解释器调用的,因此应该尽量使用 len(my_object) 而不是 my_object.__len__() 这种写法.在执行 len(my_object) 时,Python 解释器会自行调用 my_object 中实现的 __len__ 方法. 除非有大量的元编程存在,直接调用特殊方法的频率应远小于实现它们的次数. 模拟数值类型 可以通过在自定义对象中实现 __add__ 和 __mul__ 等特殊方法 ,令其支持 +.* 等运算符. 如下面的模拟向
-
PyTorch中的拷贝与就地操作详解
前言 PyTroch中我们经常使用到Numpy进行数据的处理,然后再转为Tensor,但是关系到数据的更改时我们要注意方法是否是共享地址,这关系到整个网络的更新.本篇就In-palce操作,拷贝操作中的注意点进行总结. In-place操作 pytorch中原地操作的后缀为_,如.add_()或.scatter_(),就地操作是直接更改给定Tensor的内容而不进行复制的操作,即不会为变量分配新的内存.Python操作类似+=或*=也是就地操作.(我加了我自己~) 为什么in-place操作可以
-
Pytorch中的学习率衰减及其用法详解
Pytorch 学习率衰减及其用法 学习率衰减是一个非常有效的炼丹技巧之一,在神经网络的训练过程中,当accuracy出现震荡或loss不再下降时,进行适当的学习率衰减是一个行之有效的手段,很多时候能明显提高accuracy. Pytorch中有两种学习率调整(衰减)方法: 使用库函数进行调整: 手动调整. 1. 使用库函数进行调整: Pytorch学习率调整策略通过 torch.optim.lr_sheduler 接口实现.pytorch提供的学习率调整策略分为三大类,分别是: (1)有序调整
-
Pytorch中TensorBoard及torchsummary的使用详解
1.TensorBoard神经网络可视化工具 TensorBoard是一个强大的可视化工具,在pytorch中有两种调用方法: 1.from tensorboardX import SummaryWriter 这种方法是在官方还不支持tensorboard时网上有大神写的 2.from torch.utils.tensorboard import SummaryWriter 这种方法是后来更新官方加入的 1.1 调用方法 1.1.1 创建接口SummaryWriter 功能:创建接口 调用方法:
-
PyTorch中torch.nn.functional.cosine_similarity使用详解
目录 概述 按照dim=0求余弦相似: 按照dim=1求余弦相似: 总结 概述 根据官网文档的描述,其中 dim表示沿着对应的维度计算余弦相似.那么怎么理解呢? 首先,先介绍下所谓的dim: a = torch.tensor([[ [1, 2], [3, 4] ], [ [5, 6], [7, 8] ] ], dtype=torch.float) print(a.shape) """ [ [ [1, 2], [3, 4] ], [ [5, 6], [7, 8] ] ] &qu
随机推荐
- 用InstallShield检测是否安装IIS的脚本
- angularjs 源码解析之scope
- Linux下重启oracle服务及监听器和实例详解
- iOS 中 使用UITextField格式化银行卡号码的解决方案
- iOS10 Xcode8开发适配问题及解决方案
- Mybatis逆工程的使用
- set_include_path在win和linux下的区别
- mysql 索引详细介绍
- vue指令以及dom操作详解
- PHP技术开发技巧分享
- Javascript异步表单提交,图片上传,兼容异步模拟ajax技术
- jquery实现拖动效果
- 探究在C++程序并发时保护共享数据的问题
- 基于JavaScript实现仿京东图片轮播效果
- IIS设置CACHE过期时间的教程
- Adapter模式实战之重构鸿洋集团的Android圆形菜单建行
- java类型生命周期的详细解析
- C#控制Excel Sheet使其自适应页宽与列宽的方法
- WindowsXP系统隐藏技巧大放送
- Android利用Dom对XML进行增删改查操作详解