Python可视化神器pyecharts绘制雷达图

目录
  • 雷达图
  • 雷达图模板系列
    • 基础雷达图
    • 单例雷达图
    • 空气质量模板
    • 颜色雷达图

雷达图

雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法。轴的相对位置和角度通常是无信息的。 雷达图也称为网络图,蜘蛛图,星图,蜘蛛网图,不规则多边形,极坐标图或Kiviat图。它相当于​ ​平行坐标图​​,轴径向排列。

平行坐标图:

平行坐标图是一种通常的可视化方法, 用于对 高维几何 和 多元数据 的可视化。

为了表示在高维空间的一个点集,在N条平行的线的背景下,(一般这N条线都竖直且等距),一个在高维空间的点被表示为一条拐点在N条平行坐标轴的折线,在第K个坐标轴上的位置就表示这个点在第K个维的值。

平行坐标图是信息可视化的一种重要技术。为了克服传统的笛卡尔直角坐标系容易耗尽空间、 难以表达三维以上数据的问题, 平行坐标图将高维数据的各个变量用一系列相互平行的坐标轴表示, 变量值对应轴上位置。为了反映变化趋势和各个变量间相互关系,往往将描述不同变量的各点连接成折线。所以平行坐标图的实质是将m维欧式空间的一个点Xi(xi1,xi2,...,xim) 映射到二维平面上的一条曲线。

平行坐标图的一个显著优点是其具有良好的数学基础,其射影几何解释和对偶特性使它很适合用于可视化数据分析。

雷达图主要应用于企业经营状况—— href="https://baike.baidu.com/item/%E6%94%B6%E7%9B%8A" rel="nofollow" target="_blank"> 收益性、生产性、流动性、安全性和成长性的评价。上述指标的分布组合在一起非常象雷达的形状,因此而得名。

雷达图模板系列

基础雷达图

import pyecharts.options as opts
from pyecharts.charts import Radar

v1 = [[4300, 10000, 28000, 35000, 50000, 19000]]
v2 = [[5000, 14000, 28000, 31000, 42000, 21000]]

(
Radar(init_opts=opts.InitOpts(width="1280px", height="720px", bg_color="#CCCCCC"))
.add_schema(
schema=[
opts.RadarIndicatorItem(name="销售(sales)", max_=6500),
opts.RadarIndicatorItem(name="管理(Administration)", max_=16000),
opts.RadarIndicatorItem(name="信息技术(Information Technology)", max_=30000),
opts.RadarIndicatorItem(name="客服(Customer Support)", max_=38000),
opts.RadarIndicatorItem(name="研发(Development)", max_=52000),
opts.RadarIndicatorItem(name="市场(Marketing)", max_=25000),
],
splitarea_opt=opts.SplitAreaOpts(
is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
),
textstyle_opts=opts.TextStyleOpts(color="#fff"),
)
.add(
series_name="预算分配(Allocated Budget)",
data=v1,
linestyle_opts=opts.LineStyleOpts(color="#CD0000"),
)
.add(
series_name="实际开销(Actual Spending)",
data=v2,
linestyle_opts=opts.LineStyleOpts(color="#5CACEE"),
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
title_opts=opts.TitleOpts(title="基础雷达图"), legend_opts=opts.LegendOpts()
)
.render("基础雷达图.html")
)

单例雷达图

from pyecharts import options as opts
from pyecharts.charts import Radar

v1 = [[4300, 10000, 28000, 35000, 50000, 19000]]
v2 = [[5000, 14000, 28000, 31000, 42000, 21000]]
c = (
Radar()
.add_schema(
schema=[
opts.RadarIndicatorItem(name="销售", max_=6500),
opts.RadarIndicatorItem(name="管理", max_=16000),
opts.RadarIndicatorItem(name="信息技术", max_=30000),
opts.RadarIndicatorItem(name="客服", max_=38000),
opts.RadarIndicatorItem(name="研发", max_=52000),
opts.RadarIndicatorItem(name="市场", max_=25000),
]
)
.add("预算分配", v1)
.add("实际开销", v2)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
legend_opts=opts.LegendOpts(selected_mode="single"),
title_opts=opts.TitleOpts(title="标题"),
)
.render("一维雷达图.html")
)

空气质量模板

from pyecharts import options as opts
from pyecharts.charts import Radar

value_bj = [
[55, 9, 56, 0.46, 18, 6, 1],
[25, 11, 21, 0.65, 34, 9, 2],
[56, 7, 63, 0.3, 14, 5, 3],
[33, 7, 29, 0.33, 16, 6, 4],
[42, 24, 44, 0.76, 40, 16, 5],
[82, 58, 90, 1.77, 68, 33, 6],
[74, 49, 77, 1.46, 48, 27, 7],
[78, 55, 80, 1.29, 59, 29, 8],
[267, 216, 280, 4.8, 108, 64, 9],
[185, 127, 216, 2.52, 61, 27, 10],
[39, 19, 38, 0.57, 31, 15, 11],
[41, 11, 40, 0.43, 21, 7, 12],
]
value_sh = [
[91, 45, 125, 0.82, 34, 23, 1],
[65, 27, 78, 0.86, 45, 29, 2],
[83, 60, 84, 1.09, 73, 27, 3],
[109, 81, 121, 1.28, 68, 51, 4],
[106, 77, 114, 1.07, 55, 51, 5],
[109, 81, 121, 1.28, 68, 51, 6],
[106, 77, 114, 1.07, 55, 51, 7],
[89, 65, 78, 0.86, 51, 26, 8],
[53, 33, 47, 0.64, 50, 17, 9],
[80, 55, 80, 1.01, 75, 24, 10],
[117, 81, 124, 1.03, 45, 24, 11],
[99, 71, 142, 1.1, 62, 42, 12],
]
c_schema = [
{"name": "AQI", "max": 300, "min": 5},
{"name": "PM2.5", "max": 250, "min": 20},
{"name": "PM10", "max": 300, "min": 5},
{"name": "CO", "max": 5},
{"name": "NO2", "max": 200},
{"name": "SO2", "max": 100},
]
c = (
Radar()
.add_schema(schema=c_schema, shape="circle")
.add("北京", value_bj, color="#f9713c")
.add("上海", value_sh, color="#b3e4a1")
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(title_opts=opts.TitleOpts(title="空气质量"))
.render("空气质量.html")
)

颜色雷达图

线条颜色可以配置:

from pyecharts import options as opts
from pyecharts.charts import Radar

data = [{"value": [4, -4, 2, 3, 0, 1], "name": "预算分配"}]
c_schema = [
{"name": "销售", "max": 4, "min": -4},
{"name": "管理", "max": 4, "min": -4},
{"name": "技术", "max": 4, "min": -4},
{"name": "客服", "max": 4, "min": -4},
{"name": "研发", "max": 4, "min": -4},
{"name": "市场", "max": 4, "min": -4},
]
c = (
Radar()
.set_colors(["#4587E7"])
.add_schema(
schema=c_schema,
shape="circle",
center=["50%", "50%"],
radius="80%",
angleaxis_opts=opts.AngleAxisOpts(
min_=0,
max_=360,
is_clockwise=False,
interval=5,
axistick_opts=opts.AxisTickOpts(is_show=False),
axislabel_opts=opts.LabelOpts(is_show=False),
axisline_opts=opts.AxisLineOpts(is_show=False),
splitline_opts=opts.SplitLineOpts(is_show=False),
),
radiusaxis_opts=opts.RadiusAxisOpts(
min_=-4,
max_=4,
interval=2,
splitarea_opts=opts.SplitAreaOpts(
is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)
),
),
polar_opts=opts.PolarOpts(),
splitarea_opt=opts.SplitAreaOpts(is_show=False),
splitline_opt=opts.SplitLineOpts(is_show=False),
)
.add(
series_name="预算",
data=data,
areastyle_opts=opts.AreaStyleOpts(opacity=0.2),
linestyle_opts=opts.LineStyleOpts(width=2),
)
.render("颜色雷达图.html")
)

到此这篇关于Python可视化神器pyecharts绘制雷达图的文章就介绍到这了,更多相关Python绘制雷达图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python绘制雷达图实例讲解

    在python中,有很多用于生成基于JS的百度开源的数据可视化图表 Echarts 的类库.设置的图样都非常漂亮,小编之前研究过很多图示,用python去抓取数据,然后进行画图,经历这么多得图样,最深有感触的还是关于绘制雷达图,大家应该都遇到过需要用到雷达图的时候吧,那就一起来了解下吧. 安装模块: pip install pyecharts 导入模块: from pyecharts import options as opts 准备数据: 大家可以自行导入数据使用. 绘制雷达图: randar

  • 使用python绘制温度变化雷达图

    本文实例为大家分享了python绘制温度变化雷达图的具体代码,供大家参考,具体内容如下 假设某天某地每三个小时取样的气温为 针对温度变化趋势绘制雷达图: 代码如下: import numpy as np import matplotlib.pyplot as plt #标签 labels = np.array(['3℃','5℃','6℃','3℃','1℃','3℃','3℃','2℃']) #数据个数 dataLenth = 8 #数据 data = np.array([3,5,6,3,1,

  • python处理excel绘制雷达图

    本文实例为大家分享了python处理excel绘制雷达图的具体代码,供大家参考,具体内容如下 python处理excel制成雷达图,利用工具plotly在线生成,事先要安装好xlrd组件 代码: import xlrd //事先要下载好xlrd组件 import plotly.plotly as py import plotly.graph_objs as go from plotly import tools from plotly.graph_objs import * tools.set_

  • 用python绘制极坐标雷达图

    目录 综述 绘图代码和解析 绘制一张多主体雷达图 绘制多张单主体雷达图 总结 综述 python的matplotlib画图库的功能非常强大,可以画很多很多种图,我们日常生活中遇到的雷达图也不例外. 雷达图也被称为网络图,蜘蛛图,星图等,是一个不规则的多边形.雷达图可以形象地展示相同事物的多维指标,应用场景非常多,比如本篇博客中,用来展示球员的不同能力的区别. matplotlib库中的雷达图绘制是基于极坐标的,因此所有的数据和标签都要根据角度来计算出位置. 本篇博客将详细的解释绘制雷达图过程中的

  • 如何用python绘制雷达图

    目录 一.比较汽车性能 二.比较不同城市近期天气状况 雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法,雷达图通常用于综合分析多个指标,具有完整,清晰和直观的优点. 下面以实际例子给大家讲解一下雷达图的应用场景和绘制方法: 一.比较汽车性能 这类雷达图一般用于比较同类事物不同纬度性能的优劣,以奥迪A4L时尚动感型和凯迪拉克CT4精英型为例,我们来画一下这两种汽车的雷达图,代码如下: import pyecharts.options as opts f

  • Python绘制雷达图时遇到的坑的解决

    ValueError: The number of FixedLocator locations (9), usually from a call to set_ticks, does not match the number of ticklabels (8). 运行书中例题时发现了这个错误, 原代码如上: import numpy as np import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['font

  • 如何利用Python matplotlib绘制雷达图

    本篇文章介绍使用matplotlib绘制雷达图. 雷达图也被称为网络图,蜘蛛图,星图,蜘蛛网图,是一个不规则的多边形.雷达图可以形象地展示相同事物的多维指标,雷达图几乎随处可见,应用场景非常多. 一.matplotlib绘制圆形雷达图 # coding=utf-8 import numpy as np import matplotlib.pyplot as plt results = [{"大学英语": 87, "高等数学": 79, "体育":

  • Python可视化神器pyecharts绘制雷达图

    目录 雷达图 雷达图模板系列 基础雷达图 单例雷达图 空气质量模板 颜色雷达图 雷达图 雷达图是以从同一点开始的轴上表示的三个或更多个定量变量的二维图表的形式显示多变量数据的图形方法.轴的相对位置和角度通常是无信息的. 雷达图也称为网络图,蜘蛛图,星图,蜘蛛网图,不规则多边形,极坐标图或Kiviat图.它相当于​ ​平行坐标图​​,轴径向排列. 平行坐标图: 平行坐标图是一种通常的可视化方法, 用于对 高维几何 和 多元数据 的可视化. 为了表示在高维空间的一个点集,在N条平行的线的背景下,(一

  • Python可视化神器pyecharts绘制漏斗图

    目录 漏斗图 漏斗图系列模板 尖顶型漏斗图 锥子型漏斗 三角形漏斗 连接型漏斗 漏斗图 漏斗图是由Light等在1984年提出,一般以单个研究的效应量为横坐标,样本含量为纵坐标做的散点图.效应量可以为RR.OR和死亡比或者其对数值等.理论上讲,被纳入Meta分析的各独立研究效应的点估计,在平面坐标系中的集合应为一个倒置的漏斗形,因此称为漏斗图. 样本量小,研究精度低,分布在漏斗图的底部,向周围分散: 样本量大,研究精度高,分布在漏斗图的顶部,向中间集中. 漏斗图法的优点是: 简单易行,只需要被纳

  • Python可视化神器pyecharts绘制水球图

    目录 水球图 双水球图显示 正方形水球图 圆球水球图 数据精度水球图 炫酷水球超级好看 水球图 水球图首先是动态的效果,像水流一样波动,所以看起来比较的舒服,一般用于业务里面的完成率,其实和之前的仪表盘有点类似,但是我个人绝对水球图更加的好,因为看起来比较的炫酷. from pyecharts import options as opts from pyecharts.charts import Liquid from pyecharts.globals import SymbolType c

  • Python可视化神器pyecharts绘制折线图详情

    目录 折线图介绍 折线图模板系列 双折线图(气温最高最低温度趋势显示) 面积折线图(紧贴Y轴) 简单折线图(无动态和数据标签) 连接空白数据折线图 对数轴折线图示例 折线图堆叠(适合多个折线图展示) 二维曲线折线图(两个数据) 多维度折线图(颜色对比) 阶梯折线图 js高渲染折线图 折线图介绍 折线图和柱状图一样是我们日常可视化最多的一个图例,当然它的优势和适用场景相信大家肯定不陌生,要想快速的得出趋势,抓住趋势二字,就会很快的想到要用折线图来表示了.折线图是通过直线将这些点按照某种顺序连接起来

  • Python可视化神器pyecharts绘制桑基图

    目录 桑基图 桑基图系列模板 第一个桑基图 复杂桑基图 桑基图 桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图.它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于​​能源​​​.材料成分.​​金融​​​等数据的可视化分析.因1898年Matthew Henry Phineas Riall Sankey绘制的“​​蒸汽机​​的能源效率图”而闻名,此后便以其名字命名为“桑基图”. 桑基图最明显的特征就是,始末端的分支宽度总和相等,即所有主支宽度

  • Python可视化神器pyecharts绘制柱状图

    目录 主题介绍 图表参数 主题详解 柱状图模板系列 海量数据柱状图动画展示 收入支出柱状图(适用于记账) 三维数据叠加 柱状图与折线图多维展示(同屏展示) 单列多维数据展示 3D柱状图 主题介绍 pyecharts里面有很多的主题可以供我们选择,我们可以根据自己的需要完成主题的配置,这样就告别了软件的限制,可以随意的发挥自己的艺术细胞了. 图表参数 ''' def add_yaxis( # 系列名称,用于 tooltip 的显示,legend 的图例筛选. series_name: str, #

  • Python可视化神器pyecharts绘制地理图表

    目录 地理图表 地理图表之热力图系列模板 人口流动趋势图(中国) 中国城市分段热力图 重庆省份微塑料分布热力图 中国城市连续热力图 中国城市热力动态图 中国城市散点热力图 地理图表 什么是地理图表?地理图表有什么作用?地理图表主要应用在那些领域? 其实这些问题看看下面的实例图形就已不攻自破了,地理图表一看首先就是地图,然后在地理图表里面展示数据,比如说热力图,趋势流动图,人口密集分布图,反正地理坐标相关的就可以运用在这个里面,其次图形支持全球地图,全球国家,中国,中国的所有的省份的地图,反正应有

  • Python可视化神器pyecharts绘制仪表盘

    目录 仪表盘 仪表盘模板系列 假期剩余额度 任务完成率 多色仪表盘 仪表盘内部字体添加 仪表盘 仪表盘的效果我只能说炫酷而已,如果想要运用在实际的场景中,我其实也不清楚那个场景比较适合,但是pyecharts毕竟是炫酷可视化的利器,炫酷自然也就有它了. 小汽车仪表盘是长这样的,下面我们来看看pyecharts的仪表盘是怎么样子的. 仪表盘模板系列 假期剩余额度 import pyecharts.options as opts from pyecharts.charts import Gauge

  • Python可视化神器pyecharts之绘制箱形图

    目录 箱形图 概念 用处 箱形图系列模板 第一个箱形图 复杂一点的图例 箱形图 概念 后面的图形都是一些专业的统计图形,当然也会是我们可视化的对象. 箱形图(Box-plot)又称为盒须图.盒式图或箱线图,是一种用作显示一组数据分散情况资料的统计图.因形状如箱子而得名.在各种领域也经常被使用,常见于​​品质管理​​.它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比 较.箱线图的绘制方法是:先找出一组数据的上边缘.下边缘.中位数和两个四分位数:然后, 连接两个四分位数画出箱体:再将

  • Python 数据可视化神器Pyecharts绘制图像练习

    目录 前言: 1.Hive数据库查询sql 2.Python代码实现—柱状图 3.Python代码实现—饼状图 4.Python代码实现—箱型图 5.Python代码实现—折线图 6.Python代码实现—雷达图 7.Python代码实现—散点图 前言: Echarts 是百度开源的一款数据可视化 JS 工具,数据可视化类型十分丰富,但是得通过导入 js 库在 Java Web 项目上运行. 作为工作中常用 Python 的选手,不能不知道这款数据可视化插件的强大.那么,能否在 Python 中

随机推荐