Opencv判断颜色相似的图片示例代码

问题描述

有一个项目,大体是要判断一下一篇文章内的配图突不突兀。

素材准备

所以就从网上随便找了4张图:

可以看出,前3张图片从颜色上、从阅读感受上,应该是相似的,而最后一张应该是不同的。

而当我们只对图片做缩放(为了跑得快),然后用bgr通道出直方图算相似度时:

却发现,只有第一张和第二张图片的相似度是大于0.5的,而第二、三张,以及第三、四张图片之间的相似度几乎都小于等于0.1。

思考方法

于是,经过思考后我觉得,判断两张图片在颜色上相不相似,其本质在于判断其直方图分布的形状相不相似,而不应该考虑是偏左还是偏右、是偏亮还是偏暗。一个图像亮一点,但其实它们还是相似的。

基于这个思想,我先暴力的把BGR以及HLS,三个通道先相互独立的直接均衡化,验证了判断分布形状的可行性。但同时,发现相互独立的均衡化会导致对于不同图片的分辨能力降低。所以,由此推论出,应该是把亮度拉平均衡化,同时相关联的影响到其他通道的变化。

所以,最后想出的方案是:

  1. 先把图片缩放至统一大小,提升运算速度。
  2. 把图像从BGR通道转至HSV通道(经实验,HSV通道比HLS通道效果好)。
  3. 把HSV中的V(明度)进行均衡化(equalizeHist)。
  4. 再把图像从HSV通道转回BGR通道,从而达到在均衡亮度的同时影响其他通道的目的。
  5. 最后,利用BGR通道进行相似度计算,大于0.5的即可认为是相似。

测试结果

可以发现,经过处理后,第一、二张图片,以及第二、三张图片之间的相似度已经大于0.7,而第三、四张图片的相似度则只有0.4左右。已经达到了我们开始时的目标。

不足之处

  • 只对V通道的均衡进行了探寻,没有研究其他通道可能的关联。
  • 第三、四张图片经过处理后的相似度有点高,需要想办法降低。

代码

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt

def create_rgb_hist(image):
  """"创建 RGB 三通道直方图(直方图矩阵)"""
  h, w, c = image.shape
  # 创建一个(16*16*16,1)的初始矩阵,作为直方图矩阵
  # 16*16*16的意思为三通道每通道有16个bins
  rgbhist = np.zeros([16 * 16 * 16, 1], np.float32)
  bsize = 256 / 16
  for row in range(h):
    for col in range(w):
      b = image[row, col, 0]
      g = image[row, col, 1]
      r = image[row, col, 2]
      # 人为构建直方图矩阵的索引,该索引是通过每一个像素点的三通道值进行构建
      index = int(b / bsize) * 16 * 16 + int(g / bsize) * 16 + int(r / bsize)
      # 该处形成的矩阵即为直方图矩阵
      rgbhist[int(index), 0] += 1
  plt.ylim([0, 10000])
  plt.grid(color='r', linestyle='--', linewidth=0.5, alpha=0.3)
  return rgbhist

def hist_compare(hist1, hist2):
  """直方图比较函数"""
  '''# 创建第一幅图的rgb三通道直方图(直方图矩阵)
  hist1 = create_rgb_hist(image1)
  # 创建第二幅图的rgb三通道直方图(直方图矩阵)
  hist2 = create_rgb_hist(image2)'''
  # 进行三种方式的直方图比较
  match1 = cv.compareHist(hist1, hist2, cv.HISTCMP_BHATTACHARYYA)
  match2 = cv.compareHist(hist1, hist2, cv.HISTCMP_CORREL)
  match3 = cv.compareHist(hist1, hist2, cv.HISTCMP_CHISQR)
  print("巴氏距离:%s, 相关性:%s, 卡方:%s" % (match1, match2, match3))

def handle_img(img):
  img = cv.resize(img, (100, 100))
  img = cv.cvtColor(img, cv.COLOR_BGR2HSV)
  img[:, :, 2] = cv.equalizeHist(img[:, :, 2])
  img = cv.cvtColor(img, cv.COLOR_HSV2BGR)
  return img

img1 = cv.imread("1.jpg")
img1 = handle_img(img1)
cv.imshow("img1", img1)

img2 = cv.imread("2.jpg")
img2 = handle_img(img2)
cv.imshow("img2", img2)

img3 = cv.imread("3.jpg")
img3 = handle_img(img3)
cv.imshow("img3", img3)

img4 = cv.imread("4.jpg")
img4 = handle_img(img4)
cv.imshow("img4", img4)

hist1 = create_rgb_hist(img1)
hist2 = create_rgb_hist(img2)
hist3 = create_rgb_hist(img3)
hist4 = create_rgb_hist(img4)

plt.subplot(1, 4, 1)
plt.title("hist1")
plt.plot(hist1)
plt.subplot(1, 4, 2)
plt.title("hist2")
plt.plot(hist2)
plt.subplot(1, 4, 3)
plt.title("hist3")
plt.plot(hist3)
plt.subplot(1, 4, 4)
plt.title("hist4")
plt.plot(hist4)

hist_compare(hist1, hist2)
hist_compare(hist2, hist3)
hist_compare(hist3, hist4)

plt.show()

cv.waitKey(0)
cv.destroyAllWindows()

到此这篇关于Opencv判断颜色相似的图片示例代码的文章就介绍到这了,更多相关Opencv判断相似图片内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python+Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

  • Opencv判断颜色相似的图片示例代码

    问题描述 有一个项目,大体是要判断一下一篇文章内的配图突不突兀. 素材准备 所以就从网上随便找了4张图: 可以看出,前3张图片从颜色上.从阅读感受上,应该是相似的,而最后一张应该是不同的. 而当我们只对图片做缩放(为了跑得快),然后用bgr通道出直方图算相似度时: 却发现,只有第一张和第二张图片的相似度是大于0.5的,而第二.三张,以及第三.四张图片之间的相似度几乎都小于等于0.1. 思考方法 于是,经过思考后我觉得,判断两张图片在颜色上相不相似,其本质在于判断其直方图分布的形状相不相似,而不应

  • Python+Opencv实现数字识别的示例代码

    一.什么是数字识别?   所谓的数字识别,就是使用算法自动识别出图片中的数字.具体的效果如下图所示: 上图展示了算法的处理效果,算法能够自动的识别到LCD屏幕上面的数字,这在现实场景中具有很大的实际应用价值.下面我们将对它的实现细节进行详细解析. 二.如何实现数字识别?   对于数字识别这个任务而言,它并不是一个新的研究方向,很久之前就有很多的学者们在关注这个问题,并提出了一些可行的解决方案,本小节我们将对这些方案进行简单的总结. 方案一:使用现成的OCR技术. OCR,即文字识别,它是一个比较

  • opencv调整图像亮度对比度的示例代码

    图像处理 图像变换就是找到一个函数,把原始图像矩阵经过函数处理后,转换为目标图像矩阵. 可以分为两种方式,即像素级别的变换和区域级别的变换 Point operators (pixel transforms) Neighborhood (area-based) operators 像素级别的变换就相当于\(p_{after}(i,j) = f(p_{before}(i,j))\),即变换后的每个像素值都与变换前的同位置的像素值有个函数映射关系. 对比度和亮度改变 线性变换 最常用的是线性变换.即

  • OpenCV实战之图像拼接的示例代码

    目录 背景 实现步骤 一.读取文件 二.单应性矩阵计算 三.图像拼接 总结 背景 图像拼接可以应用到手机中的全景拍摄,也就是将多张图片根据关联信息拼成一张图片: 实现步骤 1.读文件并缩放图片大小: 2.根据特征点和计算描述子,得到单应性矩阵: 3.根据单应性矩阵对图像进行变换,然后平移: 4.图像拼接并输出拼接后结果图: 一.读取文件 第一步实现读取两张图片并缩放到相同尺寸: 代码如下: img1 = cv2.imread('map1.png') img2 = cv2.imread('map2

  • C++ OpenCV实现像素画的示例代码

    目录 准备工作 代码实现 完整代码 最近在学习OpenCV,准备后续更新一波OpenCV相关的内容.代码实现主要是以 C++ 为主, 另外为了辅助学习,还会使用C# 开发一款桌面的软件,用于演示各种功能. 今天我给大家准备了一个类似于打马赛克的功能.通过像素的变化,演示一个像素画的功能.像素画在 NFT 中特别的流行. 准备工作 需要安装好 OpenCV,OpenCV的安装过程在这里不再赘述.另外我们准备了一个图片. 代码实现 首先我们需要在 CmakeLists.txt 文件中, 添加 Ope

  • 利用OpenCV进行对象跟踪的示例代码

    目录 OpenCV 对象跟踪 OpenCV 对象跟踪器 物体跟踪 总结 OpenCV 对象跟踪 这篇文章使用 OpenCV 中内置的八种不同的对象跟踪算法,实现对物体的跟踪. 首先,介绍一下8种跟踪算法. 然后,演示如何使用OpenCV实现这些跟踪算法. 最后,对本文做总结. OpenCV 对象跟踪器 OpenCV 八种对象跟踪器: BOOSTING Tracker:基于用于驱动 Haar 级联 (AdaBoost) 背后的机器学习的相同算法,但与 Haar 级联一样,已有十多年的历史.这个跟踪

  • Python+OpenCV实现角度测量的示例代码

    本文介绍如何使用python语言实现角度测量,程序包括鼠标选点.直线斜率计算.角度计算三个子程序和一个主程序.最终实现效果:在图片上用鼠标确认三点,程序将会显示由此三点确定的角度,如下图所示. 1.鼠标选点 # -*- coding: utf-8 -*- import cv2 path = "picture_mqa\\angle_measure.bmp" img = cv2.imread(path) pointsList = [] def mousePoints(event,x,y,f

  • openCV实现图像融合的示例代码

    目录 1. 概念 2. 流程 3 代码 1. 概念 图像融合: 两幅图片叠加在一起,形成前景背景的效果. 2. 流程 (1)读入要融合的两幅图片.(2)把两幅图片调整到统一大小,方便下一步叠加.(3)对两幅图片按照一定的权重相加.(4)显示图片.img1,img2 --> resize --> cv2.addWeighted()–>show addWeighted方法: 函数原型: void addWeighted(InputArray src1, double alpha, Input

  • C#判断数据类型的简单示例代码

    C#判断数据类型的简单示例代码: 复制代码 代码如下: int   i   =   5; Console.WriteLine( "i is an int? {0}",i.GetType()==typeof(int)); Console.WriteLine( "i is an int? {0}",typeof(int).IsInstanceOfType(i));

  • sql通过日期判断年龄函数的示例代码

    定义函数: CREATE FUNCTION [dbo].[GetAge] ( @BirthDay nvarchar(20) --生日 ) RETURNS varchar(20) AS BEGIN if(@BirthDay is NUlL or @BirthDay='') return ''; -- Declare the return variable here DECLARE @age varchar(20) DECLARE @years int DECLARE @months int DEC

随机推荐