如何利用Opencv实现图像的加密解密

目录
  • 1、基础:基于异或操作实现图像加密解密
    • Opencv-python代码实现
    • 效果展示:
  • 2、进阶:基于混沌序列构成异或模板实现图像加密解密
    • 结果展示:
  • 总结

1、基础:基于异或操作实现图像加密解密

一般情况下,图像的加密和解密过程是通过按位异或运算实现的。将原始图像与密钥图像进行按位异或,可以实现加密,将加密后的图像与密钥图像再进行按位异或可以实现解密过程。

Opencv-python代码实现

import cv2
import numpy as np

demo = cv2.imread("E:\matlab_file\picture\picture.jpg", 0)
r, c = demo.shape
key = np.random.randint(0, 256, size=(r, c), dtype=np.uint8)  # 生成随机的密钥图像
cv2.imwrite("E:\matlab_file\picture\key.jpg", key)   # 保存密匙图像

cv2.imshow("demo", demo)  # 显示原始图像
cv2.imshow("key", key)  # 显示密钥图像

encryption = cv2.bitwise_xor(demo, key)  # 加密
cv2.imwrite("E:\matlab_file\picture\encryption.jpg", encryption)     # 保存加密后的图像
decryption = cv2.bitwise_xor(encryption, key)  # 解密
cv2.imwrite("E:\matlab_file\picture\decryption.jpg", decryption) # 保存解密后的图像

cv2.imshow("encryption", encryption)  # 显示密文图像
cv2.imshow("decryption", decryption)  # 显示解密后的图像

cv2.waitKey(-1)
cv2.destroyAllWindows()

效果展示:

原图:

密匙:

加密后:

解密后:

2、进阶:基于混沌序列构成异或模板实现图像加密解密

混沌系统是非线性的系统,表现出非常复杂的伪随机性,符合混淆规则。它对初始条件和控制参数非常敏感,任何微小的初始偏差都会被指数式放大,符合扩散规则。同时,它又是确定性的,可由非线性系统的方程、参数和初始条件完全确定。因此,初始状态和少量参数的变化就可以产生满足密码学基本特征的混沌密码序列,将混沌理论与加密技术相结合,可以形成良好的图像加密系统。目前常用于图像加密的混沌系统有:Logistic混沌映射、Chebychev映射、分段线形混沌映射、Cubic映射、标准映射、Henon映射、Lorenz混沌映射、蔡氏混沌、Rossler混沌系统、二维Sinai映射、Chen's混沌系统等。在基于混沌的图像加密方法中,有的利用混沌系统产生伪随机序列,进行序列密码形式的加密。有些利用混沌的遍历性,对产生的伪随机序列作处理,得到像素置乱后的位置,然后对像素位置进行置乱。有些利用一些混沌计算表达式可逆的特点,将像素值代入混沌计算式以进行像素的代换和扩散。与传统加密算法相比,混沌图像加密算法密钥空间大,实现简单,加密速度快。但是,基于混沌的图像加密存在以下不足:①计算机的有限精度可能导致混沌序列的周期比较短,随机性不好。 ②现有的混沌加密技术大都基于一维或二维混沌系统,容易受到相空间重构方法攻击。 ③一些混沌加密算法采用了形式比较复杂的混沌系统,速度较慢,无法实现实时的加密。

本文使用复合混沌加密算法对图像金星加密解密,详细原理见:基于复合混沌系统的数字图像加密方法

#!/usr/bin/env python
# _*_ coding:utf-8 _*_

"""
@Author       :  LitraLin
@File         : Cryption.py
@CreateTime   : 2021/10/07
@Description  : Compound chaos Encryption and Decryption of image
"""

import cv2
import math
import numpy as np

def int2bin8(x):                               # 整型转8位二进制
    result="";
    for i in range(8):
        y=x&(1)
        result+=str(y)
        x=x>>1
    return result[::-1]

def int2bin16(x):                              # 整型转8位二进制
    result="";
    for i in range(16):
        y=x&(1)
        result+=str(y)
        x=x>>1
    return result

def Encryption(img,j0,g0,x0,EncryptionImg):
    x = img.shape[0]
    y = img.shape[1]
    c = img.shape[2]
    g0 = int2bin16(g0)
    for s in range(x):
        for n in range(y):
            for z in range(c):
                m = int2bin8(img[s][n][z])                   # 像素值转八位二进制
                ans=""
                # print("ok")
                for i in range(8):
                    ri=int(g0[-1])                           # 取手摇密码机最后一位ri
                    qi=int(m[i])^ri                          # 与像素值异或得qi
                    xi = 1 - math.sqrt(abs(2 * x0 - 1))      # f1(x)混沌迭代
                    if qi==0:                                # 如果qi=0,则运用x0i+x1i=1;
                        xi=1-xi;
                    x0=xi                                    # xi迭代
                    t=int(g0[0])^int(g0[12])^int(g0[15])     # 本源多项式x^15+x^3+1
                    g0=str(t)+g0[0:-1]                       # gi迭代
                    ci=math.floor(xi*(2**j0))%2              # 非线性转换算子
                    ans+=str(ci)
                re=int(ans,2)
                EncryptionImg[s][n][z]=re                    # 写入新图像

def Decryption(EncryptionImg, j0, g0, x0, DecryptionImg):
    x = EncryptionImg.shape[0]
    y = EncryptionImg.shape[1]
    c = EncryptionImg.shape[2]
    g0 = int2bin16(g0)
    for s in range(x):
        for n in range(y):
            for z in range(c):
                cc = int2bin8(img[s][n][z])
                ans = ""
                # print("no")
                for i in range(8):
                    xi = 1 - math.sqrt(abs(2 * x0 - 1))
                    x0 = xi
                    ssi = math.floor(xi * (2 ** j0)) % 2
                    qi=1-(ssi^int(cc[i]))
                    ri = int(g0[-1])
                    mi=ri^qi
                    t = int(g0[0]) ^ int(g0[12]) ^ int(g0[15])
                    g0 = str(t) + g0[0:-1]
                    ans += str(mi)
                re = int(ans, 2)
                DecryptionImg[s][n][z] = re

if __name__ == "__main__":
    img = cv2.imread(r"E:\matlab_file\picture\Correlation_matrix.png", 1)                    # 读取原始图像

    EncryptionImg = np.zeros(img.shape, np.uint8)
    Encryption(img,10,30,0.123345,EncryptionImg)                                       # 加密
    cv2.imwrite(r"E:\matlab_file\picture\Correlation_matrix-EncryptionImg.png",EncryptionImg)  # 保存加密后的图像

    img = cv2.imread(r"E:\matlab_file\picture\Correlation_matrix-EncryptionImg.png", 1)        # 读取加密图像
    DecryptionImg = np.zeros(img.shape, np.uint8)
    Decryption(img, 10, 30, 0.123345, DecryptionImg)                                   # 解密
    cv2.imwrite(r"E:\matlab_file\picture\Correlation_matrix-DecryptionImg.png", DecryptionImg) # 保存解密后的图像

    cv2.waitKey(0)

结果展示:

原图:

加密后:

解密后:

总结

到此这篇关于如何利用Opencv实现图像加密解密的文章就介绍到这了,更多相关Opencv图像加密解密内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 如何利用Opencv实现图像的加密解密

    目录 1.基础:基于异或操作实现图像加密解密 Opencv-python代码实现 效果展示: 2.进阶:基于混沌序列构成异或模板实现图像加密解密 结果展示: 总结 1.基础:基于异或操作实现图像加密解密 一般情况下,图像的加密和解密过程是通过按位异或运算实现的.将原始图像与密钥图像进行按位异或,可以实现加密,将加密后的图像与密钥图像再进行按位异或可以实现解密过程. Opencv-python代码实现 import cv2 import numpy as np demo = cv2.imread(

  • python 利用opencv实现图像网络传输

    本代码主要实现的是利用网络传输图片,用在我的树莓派项目之上.该项目在PC上运行服务端,树莓派上运行客户端,两者连接到同一局域网中,修改代码中的IP地址,就可以实现将树莓派采集到的图像数据实时传输到PC端.先运行服务端代码,然后运行客户端代码即可.树莓派摄像头使用的是普通的USB摄像头,并且在树莓派上安装了opencv,在树莓派上安装opencv的过程可以参考https://www.pyimagesearch.com/2017/09/04/raspbian-stretch-install-open

  • 详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)

    前言 最近参加了大创项目,题目涉及到计算机视觉,学姐发了个修正图像的博客链接,于是打算用这个题目入门OpenCV. 分析问题 照片中的PPT区域总是沿着x,y,z三个轴都有倾斜(如下图),要想把照片翻转到平行位置,需要进行透视变换,而透视变换需要同一像素点变换前后的坐标.由此可以想到,提取矩形区域四个角的坐标作为变换前的坐标,变换后的坐标可以设为照片的四个角落,经过投影变换,矩形区域将会翻转并充满图像. 因此我们要解决的问题变为:提取矩形的四个角落.进行透视变换. 提取矩形角落坐标 矩形的检测主

  • openCV提取图像中的矩形区域

    改编自详解利用OpenCV提取图像中的矩形区域(PPT屏幕等)原文是c++版,我改成了python版,供大家参考学习. 主要思想:边缘检测->轮廓检测->找出最大的面积的轮廓->找出顶点->投影变换 import numpy as np import cv2 # 这个成功的扣下了ppt白板 srcPic = cv2.imread('2345.jpg') length=srcPic.shape[0] depth=srcPic.shape[1] polyPic = srcPic shr

  • 利用python设计图像加密技术(Arnold算法)

    目录 1.加密算法要求 2.Arnold置乱原理 3.python实现 4.结果分析与总结 下面展示了图像的加密和解密过程(左边是输入图像,中间是加密后的结果,右边是解密后的图像): 1.加密算法要求 (1)加密算法必须是可逆的,拥有配套的解密算法 (2)必须是安全的,拦截者不能轻易的破解加密方式 (3)不能造成数据量剧增,比如一个1kb的图像加密后变为100kb 2.Arnold置乱原理 Arnold置乱又称为猫脸置乱,据说是因为Arnold首先对猫脸图像应用了这个算法.置乱的含义是置换和打乱

  • Java与Node.js利用AES加密解密出相同结果的方法示例

    前言 工作中遇到nodejs端通过aes加密,安卓客户端Java解密,同样nodejs也需要解密安卓客户端加密过来的内容,发现两个加密结果不一样,查询资料发现java端需要对密钥再MD5加密一遍,以下是Java与Node.js利用AES加密解密出相同结果的方法,需要的朋友们下面来一起学习学习吧. JAVA代码如下: package g.g; import java.security.MessageDigest; import javax.crypto.Cipher; import javax.c

  • 利用OpenCV中对图像数据进行64F和8U转换的方式

    在OpenCV中很多对数据的运算都需要转换为64F类型,比如伽玛变换,这个很明显要求幂的底数是double类型~ 而cvShowImage()又要求是U8才能显示,否则显示出来是一片空白! 所以经常要进行转换,怎么做呢?看了下面的几行代码你就知道了! IplImage *pSrcImage = cvLoadImage("pout.jpg", CV_LOAD_IMAGE_UNCHANGED); IplImage *pGrayImage_8U = cvCreateImage(cvGetSi

  • 利用Python实现RSA加密解密方法实例

    目录 前言 一.安装模块 二.生成密钥对 三.加密 四.解密 五.完整代码 总结 前言 加密技术在数据安全存储,数据传输中发挥着重要作用,能够保护用户隐私数据安全,防止信息窃取.RSA是一种非对称加密技术,在软件.网页中已得到广泛应用.本文将介绍RSA加密解密在python中的实现. 原则:公钥加密,私钥解密 解释:具体过程的解释请见代码前的注释 RSA加密实验基本流程: 一.选取两个大素数p.q,并计算得到n.phi_n 二.选取常用的e = 0x10001,方便将幂运算优化为左移,加快运算速

  • Python利用OpenCV和skimage实现图像边缘检测

    目录 一.简介 二.opencv 实践 三.skimage 实践 一.简介 提取图片的边缘信息是底层数字图像处理的基本任务之一.边缘信息对进一步提取高层语义信息有很大的影响.大部分边缘检测算法都是上个世纪的了,OpenCV 的使用的算法是 Canny 边缘检测算法,大概是在 1986 年由 John F. Canny 提出了,似乎说明边缘检测算法的研究已经到达了瓶颈期.跟人眼系统相比,边缘检测算法仍然逊色不少. Canny 边缘检测算法是比较出色的算法,也是一种多步算法,可用于检测任何输入图像的

随机推荐