浅谈keras中的后端backend及其相关函数(K.prod,K.cast)

一、K.prod

prod

keras.backend.prod(x, axis=None, keepdims=False)

功能:在某一指定轴,计算张量中的值的乘积。

参数

x: 张量或变量。

axis: 一个整数需要计算乘积的轴。

keepdims: 布尔值,是否保留原尺寸。 如果 keepdims 为 False,则张量的秩减 1。 如果 keepdims 为 True,缩小的维度保留为长度 1。

返回

x 的元素的乘积的张量。

Numpy 实现

def prod(x, axis=None, keepdims=False):
  if isinstance(axis, list):
    axis = tuple(axis)
  return np.prod(x, axis=axis, keepdims=keepdims)

具体例子:

import numpy as np
x=np.array([[2,4,6],[2,4,6]])

scaling = np.prod(x, axis=1, keepdims=False)
print(x)
print(scaling)

【运行结果】

二、K.cast

cast

keras.backend.cast(x, dtype)

功能:将张量转换到不同的 dtype 并返回。

你可以转换一个 Keras 变量,但它仍然返回一个 Keras 张量。

参数

x: Keras 张量(或变量)。

dtype: 字符串, ('float16', 'float32' 或 'float64')。

返回

Keras 张量,类型为 dtype。

例子

>>> from keras import backend as K
>>> input = K.placeholder((2, 3), dtype='float32')
>>> input
<tf.Tensor 'Placeholder_2:0' shape=(2, 3) dtype=float32>
# It doesn't work in-place as below.
>>> K.cast(input, dtype='float16')
<tf.Tensor 'Cast_1:0' shape=(2, 3) dtype=float16>
>>> input
<tf.Tensor 'Placeholder_2:0' shape=(2, 3) dtype=float32>
# you need to assign it.
>>> input = K.cast(input, dtype='float16')
>>> input
<tf.Tensor 'Cast_2:0' shape=(2, 3) dtype=float16>

补充知识:keras源码之backend库目录

backend库目录

先看common.py

一上来是一些说明

# the type of float to use throughout the session. 整个模块都是用浮点型数据
_FLOATX = 'float32' # 数据类型为32位浮点型
_EPSILON = 1e-7 # 很小的常数
_IMAGE_DATA_FORMAT = 'channels_last' # 图像数据格式 最后显示通道,tensorflow格式

接下来看里面的一些函数

def epsilon():
  """Returns the value of the fuzz factor used in numeric expressions.
    返回数值表达式中使用的模糊因子的值

  # Returns
    A float.
  # Example
  ```python
    >>> keras.backend.epsilon()
    1e-07
  ```
  """
  return _EPSILON

该函数定义了一个常量,值为1e-07,在终端可以直接输出,如下:

def set_epsilon(e):
  """Sets the value of the fuzz factor used in numeric expressions.
  # Arguments
    e: float. New value of epsilon.
  # Example
  ```python
    >>> from keras import backend as K
    >>> K.epsilon()
    1e-07
    >>> K.set_epsilon(1e-05)
    >>> K.epsilon()
    1e-05
  ```
  """
  global _EPSILON
  _EPSILON = e

该函数允许自定义值

以string的形式返回默认的浮点类型:

def floatx():
  """Returns the default float type, as a string.
  (e.g. 'float16', 'float32', 'float64').
  # Returns
    String, the current default float type.
  # Example
  ```python
    >>> keras.backend.floatx()
    'float32'
  ```
  """
  return _FLOATX

把numpy数组投影到默认的浮点类型:

def cast_to_floatx(x):
  """Cast a Numpy array to the default Keras float type.把numpy数组投影到默认的浮点类型
  # Arguments
    x: Numpy array.
  # Returns
    The same Numpy array, cast to its new type.
  # Example
  ```python
    >>> from keras import backend as K
    >>> K.floatx()
    'float32'
    >>> arr = numpy.array([1.0, 2.0], dtype='float64')
    >>> arr.dtype
    dtype('float64')
    >>> new_arr = K.cast_to_floatx(arr)
    >>> new_arr
    array([ 1., 2.], dtype=float32)
    >>> new_arr.dtype
    dtype('float32')
  ```
  """
  return np.asarray(x, dtype=_FLOATX)

默认数据格式、自定义数据格式和检查数据格式:

 def image_data_format():
  """Returns the default image data format convention ('channels_first' or 'channels_last').
  # Returns
    A string, either `'channels_first'` or `'channels_last'`
  # Example
  ```python
    >>> keras.backend.image_data_format()
    'channels_first'
  ```
  """
  return _IMAGE_DATA_FORMAT

def set_image_data_format(data_format):
  """Sets the value of the data format convention.
  # Arguments
    data_format: string. `'channels_first'` or `'channels_last'`.
  # Example
  ```python
    >>> from keras import backend as K
    >>> K.image_data_format()
    'channels_first'
    >>> K.set_image_data_format('channels_last')
    >>> K.image_data_format()
    'channels_last'
  ```
  """
  global _IMAGE_DATA_FORMAT
  if data_format not in {'channels_last', 'channels_first'}:
    raise ValueError('Unknown data_format:', data_format)
  _IMAGE_DATA_FORMAT = str(data_format)

def normalize_data_format(value):
  """Checks that the value correspond to a valid data format.
  # Arguments
    value: String or None. `'channels_first'` or `'channels_last'`.
  # Returns
    A string, either `'channels_first'` or `'channels_last'`
  # Example
  ```python
    >>> from keras import backend as K
    >>> K.normalize_data_format(None)
    'channels_first'
    >>> K.normalize_data_format('channels_last')
    'channels_last'
  ```
  # Raises
    ValueError: if `value` or the global `data_format` invalid.
  """
  if value is None:
    value = image_data_format()
  data_format = value.lower()
  if data_format not in {'channels_first', 'channels_last'}:
    raise ValueError('The `data_format` argument must be one of '
             '"channels_first", "channels_last". Received: ' +
             str(value))
  return data_format

剩余的关于维度顺序和数据格式的方法:

def set_image_dim_ordering(dim_ordering):
  """Legacy setter for `image_data_format`.
  # Arguments
    dim_ordering: string. `tf` or `th`.
  # Example
  ```python
    >>> from keras import backend as K
    >>> K.image_data_format()
    'channels_first'
    >>> K.set_image_data_format('channels_last')
    >>> K.image_data_format()
    'channels_last'
  ```
  # Raises
    ValueError: if `dim_ordering` is invalid.
  """
  global _IMAGE_DATA_FORMAT
  if dim_ordering not in {'tf', 'th'}:
    raise ValueError('Unknown dim_ordering:', dim_ordering)
  if dim_ordering == 'th':
    data_format = 'channels_first'
  else:
    data_format = 'channels_last'
  _IMAGE_DATA_FORMAT = data_format

def image_dim_ordering():
  """Legacy getter for `image_data_format`.
  # Returns
    string, one of `'th'`, `'tf'`
  """
  if _IMAGE_DATA_FORMAT == 'channels_first':
    return 'th'
  else:
    return 'tf'

在common.py之后有三个backend,分别是cntk,tensorflow和theano。

__init__.py

首先从common.py中引入了所有需要的东西

from .common import epsilon
from .common import floatx
from .common import set_epsilon
from .common import set_floatx
from .common import cast_to_floatx
from .common import image_data_format
from .common import set_image_data_format
from .common import normalize_data_format

接下来是检查环境变量与配置文件,设置backend和format,默认的backend是tensorflow。

# Set Keras base dir path given KERAS_HOME env variable, if applicable.
# Otherwise either ~/.keras or /tmp.
if 'KERAS_HOME' in os.environ: # 环境变量
  _keras_dir = os.environ.get('KERAS_HOME')
else:
  _keras_base_dir = os.path.expanduser('~')
  if not os.access(_keras_base_dir, os.W_OK):
    _keras_base_dir = '/tmp'
  _keras_dir = os.path.join(_keras_base_dir, '.keras')

# Default backend: TensorFlow. 默认后台是TensorFlow
_BACKEND = 'tensorflow'

# Attempt to read Keras config file.读取keras配置文件
_config_path = os.path.expanduser(os.path.join(_keras_dir, 'keras.json'))
if os.path.exists(_config_path):
  try:
    with open(_config_path) as f:
      _config = json.load(f)
  except ValueError:
    _config = {}
  _floatx = _config.get('floatx', floatx())
  assert _floatx in {'float16', 'float32', 'float64'}
  _epsilon = _config.get('epsilon', epsilon())
  assert isinstance(_epsilon, float)
  _backend = _config.get('backend', _BACKEND)
  _image_data_format = _config.get('image_data_format',
                   image_data_format())
  assert _image_data_format in {'channels_last', 'channels_first'}

  set_floatx(_floatx)
  set_epsilon(_epsilon)
  set_image_data_format(_image_data_format)
  _BACKEND = _backend

之后的tensorflow_backend.py文件是一些tensorflow中的函数说明,详细内容请参考tensorflow有关资料。

以上这篇浅谈keras中的后端backend及其相关函数(K.prod,K.cast)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Pytorch转keras的有效方法,以FlowNet为例讲解

    Pytorch凭借动态图机制,获得了广泛的使用,大有超越tensorflow的趋势,不过在工程应用上,TF仍然占据优势.有的时候我们会遇到这种情况,需要把模型应用到工业中,运用到实际项目上,TF支持的PB文件和TF的C++接口就成为了有效的工具.今天就给大家讲解一下Pytorch转成Keras的方法,进而我们也可以获得Pb文件,因为Keras是支持tensorflow的,我将会在下一篇博客讲解获得Pb文件,并使用Pb文件的方法. Pytorch To Keras 首先,我们必须有清楚的认识,网上

  • 基于K.image_data_format() == 'channels_first' 的理解

    我们在学习keras经常会看到下面这样的代码段: 查阅官方文档可以知道: 我们知道彩色图像一般会有Width, Height, Channels,而"channels_first"或"channels_last",则代表数据的通道维的位置. 该参数是Keras 1.x中的image_dim_ordering,"channels_last"对应原本的"tf","channels_first"对应原本的&quo

  • 使用Keras中的ImageDataGenerator进行批次读图方式

    ImageDataGenerator位于keras.preprocessing.image模块当中,可用于做数据增强,或者仅仅用于一个批次一个批次的读进图片数据.一开始以为ImageDataGenerator是用来做数据增强的,但我的目的只是想一个batch一个batch的读进图片而已,所以一开始没用它,后来发现它是有这个功能的,而且使用起来很方便. ImageDataGenerator类包含了如下参数:(keras中文教程) ImageDataGenerator(featurewise_cen

  • python3读取图片并灰度化图片的四种方法(OpenCV、PIL.Image、TensorFlow方法)总结

    在处理图像的时候经常是读取图片以后把图片转换为灰度图.作为一个刚入坑的小白,我在这篇博客记录了四种处理的方法. 首先导入包: import numpy as np import cv2 import tensorflow as tf from PIL import Image 方法一:在使用OpenCV读取图片的同时将图片转换为灰度图: img = cv2.imread(imgfile, cv2.IMREAD_GRAYSCALE) print("cv2.imread(imgfile, cv2.I

  • 浅谈keras中的后端backend及其相关函数(K.prod,K.cast)

    一.K.prod prod keras.backend.prod(x, axis=None, keepdims=False) 功能:在某一指定轴,计算张量中的值的乘积. 参数 x: 张量或变量. axis: 一个整数需要计算乘积的轴. keepdims: 布尔值,是否保留原尺寸. 如果 keepdims 为 False,则张量的秩减 1. 如果 keepdims 为 True,缩小的维度保留为长度 1. 返回 x 的元素的乘积的张量. Numpy 实现 def prod(x, axis=None

  • 浅谈keras 的抽象后端(from keras import backend as K)

    keras后端简介: Keras 是一个模型级库,为开发深度学习模型提供了高层次的构建模块.它不处理诸如张量乘积和卷积等底层操作,目的也就是尽量不重复造轮子. 但是底层操作还是需要的, 所以keras 依赖于一个专门的.优化的张量操作库来完成这个操作. 我们可以简单的认为这是 Keras 的「后端引擎」, keras 有三个后端实现可用 . 即: TensorFlow 后端,Theano 后端,CNTK 后端. 如果你需要修改你的后端, 只要将字段 backend 更改为 theano 或 cn

  • 浅谈keras中的Merge层(实现层的相加、相减、相乘实例)

    [题目]keras中的Merge层(实现层的相加.相减.相乘) 详情请参考: Merge层 一.层相加 keras.layers.Add() 添加输入列表的图层. 该层接收一个相同shape列表张量,并返回它们的和,shape不变. Example import keras input1 = keras.layers.Input(shape=(16,)) x1 = keras.layers.Dense(8, activation='relu')(input1) input2 = keras.la

  • 浅谈keras中的batch_dot,dot方法和TensorFlow的matmul

    概述 在使用keras中的keras.backend.batch_dot和tf.matmul实现功能其实是一样的智能矩阵乘法,比如A,B,C,D,E,F,G,H,I,J,K,L都是二维矩阵,中间点表示矩阵乘法,AG 表示矩阵A 和G 矩阵乘法(A 的列维度等于G 行维度),WX=Z import keras.backend as K import tensorflow as tf import numpy as np w = K.variable(np.random.randint(10,siz

  • 浅谈Keras中shuffle和validation_split的顺序

    模型的fit函数有两个参数,shuffle用于将数据打乱,validation_split用于在没有提供验证集的时候,按一定比例从训练集中取出一部分作为验证集 这里有个陷阱是,程序是先执行validation_split,再执行shuffle的,所以会出现这种情况: 假如你的训练集是有序的,比方说正样本在前负样本在后,又设置了validation_split,那么你的验证集中很可能将全部是负样本 同样的,这个东西不会有任何错误报出来,因为Keras不可能知道你的数据有没有经过shuffle,保险

  • 浅谈keras中的目标函数和优化函数MSE用法

    mean_squared_error / mse 均方误差,常用的目标函数,公式为((y_pred-y_true)**2).mean() model = Sequential() model.add(Dense(64, init='uniform', input_dim=10)) model.add(Activation('tanh')) model.add(Activation('softmax')) sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, ne

  • 浅谈keras中自定义二分类任务评价指标metrics的方法以及代码

    对于二分类任务,keras现有的评价指标只有binary_accuracy,即二分类准确率,但是评估模型的性能有时需要一些其他的评价指标,例如精确率,召回率,F1-score等等,因此需要使用keras提供的自定义评价函数功能构建出针对二分类任务的各类评价指标. keras提供的自定义评价函数功能需要以如下两个张量作为输入,并返回一个张量作为输出. y_true:数据集真实值组成的一阶张量. y_pred:数据集输出值组成的一阶张量. tf.round()可对张量四舍五入,因此tf.round(

  • 浅谈keras中loss与val_loss的关系

    loss函数如何接受输入值 keras封装的比较厉害,官网给的例子写的云里雾里, 在stackoverflow找到了答案 You can wrap the loss function as a inner function and pass your input tensor to it (as commonly done when passing additional arguments to the loss function). def custom_loss_wrapper(input_

  • 浅谈keras中Dropout在预测过程中是否仍要起作用

    因为需要,要重写训练好的keras模型,虽然只具备预测功能,但是发现还是有很多坑要趟过.其中Dropout这个坑,我记忆犹新. 一开始,我以为预测时要保持和训练时完全一样的网络结构,也就是预测时用的网络也是有丢弃的网络节点,但是这样想就掉进了一个大坑!因为无法通过已经训练好的模型,来获取其训练时随机丢弃的网络节点是那些,这本身就根本不可能. 更重要的是:我发现每一个迭代周期丢弃的神经元也不完全一样. 假若迭代500次,网络共有1000个神经元, 在第n(1<= n <500)个迭代周期内,从1

  • 浅谈keras中的keras.utils.to_categorical用法

    如下所示: to_categorical(y, num_classes=None, dtype='float32') 将整型标签转为onehot.y为int数组,num_classes为标签类别总数,大于max(y)(标签从0开始的). 返回:如果num_classes=None,返回len(y) * [max(y)+1](维度,m*n表示m行n列矩阵,下同),否则为len(y) * num_classes.说出来显得复杂,请看下面实例. import keras ohl=keras.utils

随机推荐