opencv python如何实现图像二值化

这篇文章主要介绍了opencv python如何实现图像二值化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

代码如下

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

# 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑,之后为白
# 有全局和局部两种
# 在使用全局阈值时,我们就是随便给了一个数来做阈值,那我们怎么知道我们选取的这个数的好坏呢?答案就是不停的尝试。
# 如果是一副双峰图像(简 单来说双峰图像是指图像直方图中存在两个峰)呢?
# 我们岂不是应该在两个峰之间的峰谷选一个值作为阈值?这就是 Otsu 二值化要做的。
# 简单来说就是对 一副双峰图像自动根据其直方图计算出一个阈值。
# (对于非双峰图像,这种方法 得到的结果可能会不理想)。

def threshold_demo(image):
  gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)

  # 这个函数的第一个参数就是原图像,原图像应该是灰度图。
  # 第二个参数就是用来对像素值进行分类的阈值。
  # 第三个参数就是当像素值高于(有时是小于)阈值时应该被赋予的新的像素值
  # 第四个参数来决定阈值方法,见threshold_simple()
  # ret, binary = cv.threshold(gray, 127, 255, cv.THRESH_BINARY)
  ret, binary = cv.threshold(gray, 127, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
  print("threshold value: %s"%ret)
  cv.imshow("threshold_demo", binary)

def threshold_simple(image):
  img = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
  ret, thresh1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)
  ret, thresh2 = cv.threshold(img, 127, 255, cv.THRESH_BINARY_INV)
  ret, thresh3 = cv.threshold(img, 127, 255, cv.THRESH_TRUNC)
  ret, thresh4 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO)
  ret, thresh5 = cv.threshold(img, 127, 255, cv.THRESH_TOZERO_INV)
  titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
  images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

  for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray') # 将图像按2x3铺开
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])

  plt.show()

# 在前面的部分我们使用是全局阈值,整幅图像采用同一个数作为阈值。
# 当时这种方法并不适应与所有情况,尤其是当同一幅图像上的不同部分的具有不同亮度时。
# 这种情况下我们需要采用自适应阈值。此时的阈值是根据图像上的 每一个小区域计算与其对应的阈值。
# 因此在同一幅图像上的不同区域采用的是不同的阈值,从而使我们能在亮度不同的情况下得到更好的结果。
# 这种方法需要我们指定三个参数,返回值只有一个
# _MEAN_C:阈值取自相邻区域的平均值,_GAUSSIAN_C:阈值取值相邻区域 的加权和,权重为一个高斯窗口。
# Block Size - 邻域大小(用来计算阈值的区域大小)。
# C - 这就是是一个常数,阈值就等于的平均值或者加权平均值减去这个常数。

def threshold_adaptive(image):
  img = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
  # 中值滤波
  img = cv.medianBlur(img,5)

  ret, th1 = cv.threshold(img, 127, 255, cv.THRESH_BINARY)
  # 11 为 Block size, 2 为 C 值
  th2 = cv.adaptiveThreshold(img, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 11, 2)
  th3 = cv.adaptiveThreshold(img,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 11, 2)

  titles = ['Original Image', 'Global Threshold (v = 127)', 'Adaptive Mean Threshold', 'Adaptive Gaussian Threshold']
  images = [img, th1, th2, th3]

  for i in range(4):
    plt.subplot(2, 2, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])

  plt.show()

def threshold_custom(image):
  gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
  h, w = gray.shape[:2]
  m = np.reshape(gray, [1, w*h])
  mean = m.sum() / (w*h) # 求出整个灰度图像的平均值
  print("mean:", mean)
  ret, binary = cv.threshold(gray, mean, 255, cv.THRESH_BINARY)
  cv.imshow("threshold_custom", binary)

# 将大图片拆分成小图片后再用自适应局部阈值比较好
def big_image_demo(image):
  print(image.shape)
  cw = 200
  ch = 200
  h, w = image.shape[:2]
  gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
  cv.imshow("big_image_demo_gray", gray)

  # 将一张图片每隔ch * cw分成一份
  for row in range(0, h, ch):
    for col in range(0, w, cw):
      roi = gray[row:row+ch, col:col+cw]
      dst = cv.adaptiveThreshold(roi, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 127, 2)
      gray[row:row + ch, col:col + cw] = dst
      print(np.std(dst), np.mean(dst))

  cv.imwrite("../images/result_big_image.png", gray)

def main():
  img = cv.imread("../images/02.jpg")
  # threshold_demo(img)
  # threshold_simple(img)
  # threshold_adaptive(img)
  # threshold_custom(img)
  src = cv.imread("../images/big_image.jpg")
  big_image_demo(src)
  cv.waitKey(0) # 等有键输入或者1000ms后自动将窗口消除,0表示只用键输入结束窗口
  cv.destroyAllWindows() # 关闭所有窗口

if __name__ == '__main__':
  main()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python-opencv 双线性插值实例

    我就废话不多说了,直接上代码吧! #coding=utf-8 import cv2 import numpy as np '''双线性插值''' img = cv2.imread('timg.jpeg', cv2.CV_LOAD_IMAGE_GRAYSCALE) # load the gray image cv2.imwrite('img.jpg', img) h, w = img.shape[:2] # shrink to half of the original a1 = np.array(

  • 关于初始种子自动选取的区域生长实例(python+opencv)

    算法中,初始种子可自动选择(通过不同的划分可以得到不同的种子,可按照自己需要改进算法),图分别为原图(自己画了两笔为了分割成不同区域).灰度图直方图.初始种子图.区域生长结果图. 另外,不管时初始种子选择还是区域生长,阈值选择很重要. import cv2 import numpy as np import matplotlib.pyplot as plt #初始种子选择 def originalSeed(gray, th): ret, thresh = cv2.cv2.threshold(gr

  • python通过opencv实现图片裁剪原理解析

    这篇文章主要介绍了python通过opencv实现图片裁剪原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 图像裁剪的基本概念 : 图像裁剪是指将图像中我们想要的研究区以外的区域去除,经常是按照行政区划或研究区域的边界对图像进行裁剪.例如,一张500×400的图像,我们只想要中间的250×200的区域,就可以使用图像裁剪将四周的区域去除. 在实际开发工作中,我们经常需要对图像进行分幅裁剪,按照ERDAS实际图像分幅裁剪的过程,可以将图像分

  • python使用openCV遍历文件夹里所有视频文件并保存成图片

    如果你在文件夹里有很多视频,并且文件夹里还有文件夹,文件夹里的文件夹也有视频,怎么能逐个读取并且保存..所以我写了个代码用了os,walk,这个可以遍历所有文件夹里的文件和文件夹 import os import cv2 cut_frame = 250 # 多少帧截一次,自己设置就行 save_path = "C:\文献与资料\手持红外\图片" for root, dirs, files in os.walk(r"C:\文献与资料\手持红外"): # 这里就填文件夹

  • python opencv如何实现图片绘制

    这篇文章主要介绍了python opencv如何实现图片绘制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 点和圆 : circle(img,center,radius,color,thickness=None,lineType=None,shift=None).各参数意义及作用如下. img:待画圆所在的图像. center:待画圆的圆心坐标. radius:待画圆的半径. color:待画圆的边框颜色,颜色格式为bgr格式.就是通道值 th

  • python opencv实现信用卡的数字识别

    本项目利用python以及opencv实现信用卡的数字识别 前期准备 导入工具包 定义功能函数 模板图像处理 读取模板图像 cv2.imread(img) 灰度化处理 cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 二值化 cv2.threshold() 轮廓 - 轮廓 信用卡图像处理 读取信用卡图像 cv2.imread(img) 灰度化处理 cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 礼帽处理 cv2.morphologyEx(gray

  • OpenCV python sklearn随机超参数搜索的实现

    本文介绍了OpenCV python sklearn随机超参数搜索的实现,分享给大家,具体如下: """ 房价预测数据集 使用sklearn执行超参数搜索 """ import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import sklearn import pandas as pd import os import sys import tens

  • python opencv根据颜色进行目标检测的方法示例

    颜色目标检测就是根据物体的颜色快速进行目标定位.使用cv2.inRange函数设定合适的阈值,即可以选出合适的目标. 建立项目colordetect.py,代码如下: #! /usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import cv2 def colorDetect(): image = cv2.imread('./1.png') # 使用RGB颜色空间检测红 蓝 黄 灰,设置合适的阈值 boundaries

  • opencv python如何实现图像二值化

    这篇文章主要介绍了opencv python如何实现图像二值化,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑,之后为白 # 有全局和局部两种 # 在使用全局阈值时,我们就是随便给了一个数来做阈值,那我们怎么知道我们选取的这个数的好坏呢?答

  • Python+OpenCV图像处理——图像二值化的实现

    简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 普通图像二值化 代码如下: import cv2 as cv import numpy as np #全局阈值 def threshold_demo(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化 #直接阈值化是对输入的单通道矩阵逐像素进行阈值分割. ret, binary = cv.threshold(gray

  • 详解Python+OpenCV实现图像二值化

    目录 一.图像二值化 1.效果 2.源码 二.图像二值化(调节阈值) 1.源码一 2.源码二 一.图像二值化 1.效果 2.源码 import cv2 import numpy as np import matplotlib.pyplot as plt # img = cv2.imread('test.jpg') #这几行是对图像进行降噪处理,但事还存在一些问题. # dst = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21) # plt

  • 关于python3 opencv 图像二值化的问题(cv2.adaptiveThreshold函数)

    前一篇研究了opencv二值化方法threshold的使用,但是这个方法也存在一定的局限性,假如有一张图存在明显的明暗不同的区域,如下图 可以看到左边部分因为整体偏暗,导致二值化后变成全黑,丢失了所有细节,这显然不是我们想要的结果. 原因threshold函数使用一个阈值对图像进行二值化,导致小于这个阈值的像素点全都变成0.因此使用一个阈值的二值化方法并不适用于上面的这张图.那怎么搞? 很明显,上面这张图只有左右两个区域明显亮度不同,最简单的方法就是把图分成两个区域,每个区域分别进行二值化,也就

  • C#数字图像处理之图像二值化(彩色变黑白)的方法

    本文实例讲述了C#数字图像处理之图像二值化(彩色变黑白)的方法.分享给大家供大家参考.具体如下: //定义图像二值化函数 private static Bitmap PBinary(Bitmap src,int v) { int w = src.Width; int h = src.Height; Bitmap dstBitmap = new Bitmap(src.Width ,src.Height ,System .Drawing .Imaging .PixelFormat .Format24

  • python验证码图片处理(二值化)

    写在最前面: 这个我打算分几次写,由于我们通过selenium拿到的图片会很模糊,所以使用Tesseract识别之前要对图片先进行处理. 第一步就是二值化,设定阈值,低于阈值全部为白色(置0),其余黑色(置1). import pytesseract from PIL import Image,ImageEnhance def binaryzation(threshold=145): #降噪,图片二值化 table = [] for i in range(256): if i < thresho

  • 基于c#图像灰度化、灰度反转、二值化的实现方法详解

    图像灰度化:将彩色图像转化成为灰度图像的过程成为图像的灰度化处理.彩色图像中的每个像素的颜色有R.G.B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围.而灰度图像是R.G.B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些.灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征.图像的灰度

  • python opencv 二值化 计算白色像素点的实例

    贴部分代码 #! /usr/bin/env python # -*- coding: utf-8 -*- import cv2 import numpy as np from PIL import Image area = 0 def ostu(img): global area image=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转灰度 blur = cv2.GaussianBlur(image,(5,5),0) # 阈值一定要设为 0 !高斯模糊 re

  • python图片二值化提高识别率代码实例

    这篇文章主要介绍了python图片二值化提高识别率代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 代码如下 import cv2from PIL import Imagefrom pytesseract import pytesseractfrom PIL import ImageEnhanceimport reimport string def createFile(filePath,newFilePath): img = Image

  • opencv函数threshold、adaptiveThreshold、Otsu二值化的实现

    threshold:固定阈值二值化, ret, dst = cv2.threshold(src, thresh, maxval, type) src: 输入图,只能输入单通道图像,通常来说为灰度图 dst: 输出图 thresh: 阈值 maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值 type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY: cv2.THRESH_BINARY_INV: cv2.THRESH_TRUNC: cv2.T

随机推荐