利用pandas将非数值数据转换成数值的方式

handle non numerical data

举个例子,将性别属性男女转换成0-1,精通ML的小老弟们可以略过本文~~,

这里不考虑稀疏向量的使用,仅提供一些思路。本来想直接利用pandas的DataFrame.iloc加上for循环直接转换,但试过一遍之后,原数据并有改变。。。。蛋疼写了一个比较 菜的函数,如下。

# 非数值列处理函数
def handel_non_numerical_data(df,name): #----------------name是需要处理的列名称(str),暂不考虑列表
 nrows = len(df[name])  #----------------数据集的行数
 old_col = df.columns.tolist() #----------------初始的列名集合
 name_index = old_col.index(name) #---------要处理的列的在数据集中的索引值
 name_data = df[name].values.tolist()#-----------将要处理烦人列复制成一个列表
 df.drop([name],axis =1,inplace =True)
 unique_kinds = set(name_data)
 convert_dict = {}; x = 0   #构造对应种类数值转化字典
 for i in unique_kinds:
 convert_dict[i] = x
 x += 1
 def convert(val):
 return convert_dict[val]
 name_data = list(map(convert,name_data))#利用map函数直接迭代转化

 new_col = df.columns.tolist()
 new_col.insert(name_index,name)
 df.reindex(columns = new_col) #----------------重构数据的列
 df[name] = name_data

跑了一遍没有出错,注意这只是baseline…,如果对数值有要求的话,需要自行改动

原本是想直接用youtube上sentdex老哥ml35期视频里的代码的,但发现了几个较为严重的bug,而且总是运行出错 ,如下

def handle_non_numerical_data(df):
 columns = df.columns.values
 for column in columns:
 text_digit_vals = {}
 def convert_to_int(val):
  return text_digit_vals[val]
 if df[column].dtype != np.int64 and df[column].dtype != np.float64:
  column_content = df[column].values.tolist()
  unique_elements = set(column_content)
  print(unique_elements)
  x =0
  for unique in unique_elements:
  if unique not in text_digit_vals:
   text_digit_vals[unique] = x
   x+=1
 df[column] = list(map(convert_to_int,df[column]))

可见,非常暴力,注意到他的if条件,有的数据集中会出现字母数字组合的情况【会出现dtype=object的情况】,set之后种类会草鸡多…,这样的话数值转换也就失去了意义【当然,如果你的样本量是亿级的,几千几百个种类无所谓我也无fuck说,这种情况我认为必须使用稀疏向量了】,另外这个代码一直报错,不知道为什么,有兴趣的老哥可以复制跑一下帮我解答一下。。。

---------------------------2019-08-21分割:

https://www.kaggle.com/nroman/recursive-feature-elimination

LabelEncoder方法

from sklearn.preprocessing import LabelEncoder

注:tqdm是进度条库,不需要关注。另外没有去看这个接口的源码,应该也是最简单的one-hot

以上这篇利用pandas将非数值数据转换成数值的方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Pandas实现数据类型转换的一些小技巧汇总

    前言 Pandas是Python当中重要的数据分析工具,利用Pandas进行数据分析时,确保使用正确的数据类型是非常重要的,否则可能会导致一些不可预知的错误发生. Pandas 的数据类型:数据类型本质上是编程语言用来理解如何存储和操作数据的内部结构.例如,一个程序需要理解你可以将两个数字加起来,比如 5 + 10 得到 15.或者,如果是两个字符串,比如「cat」和「hat」,你可以将它们连接(加)起来得到「cathat」.尚学堂•百战程序员陈老师指出有关 Pandas 数据类型的一个可能令人

  • pandas 取出表中一列数据所有的值并转换为array类型的方法

    如下所示: # -*-coding: utf-8 -*- import pandas as pd #读取csv文件 df=pd.read_csv('A_2+20+DoW+VC.csv') #求'ave_time'的平均值 aveTime=df['ave_time'].mean() #把ave_time这列的缺失值进进行填充,填充的方法是按这一列的平均值进行填充 df2=df.fillna(aveTime) #取表中的第3列的所有值 col=df2.iloc[:,2] #取表中的第3列的所有值 a

  • Python遍历pandas数据方法总结

    前言 Pandas是python的一个数据分析包,提供了大量的快速便捷处理数据的函数和方法.其中Pandas定义了Series 和 DataFrame两种数据类型,这使数据操作变得更简单.Series 是一种一维的数据结构,类似于将列表数据值与索引值相结合.DataFrame 是一种二维的数据结构,接近于电子表格或者mysql数据库的形式. 在数据分析中不可避免的涉及到对数据的遍历查询和处理,比如我们需要将dataframe两列数据两两相除,并将结果存储于一个新的列表中.本文通过该例程介绍对pa

  • 利用pandas将非数值数据转换成数值的方式

    handle non numerical data 举个例子,将性别属性男女转换成0-1,精通ML的小老弟们可以略过本文~~, 这里不考虑稀疏向量的使用,仅提供一些思路.本来想直接利用pandas的DataFrame.iloc加上for循环直接转换,但试过一遍之后,原数据并有改变....蛋疼写了一个比较 菜的函数,如下. # 非数值列处理函数 def handel_non_numerical_data(df,name): #----------------name是需要处理的列名称(str),暂

  • pandas如何将表中的字符串转成数值型

    目录 pandas将表中的字符串转成数值型 扩展:pandas 把某一列中字符串变数值_Pandas对文本数据处理 一.str属性 二.替换和分隔 三.提取子串 1.提取第一个匹配的子串 四.生成哑变量 pandas将表中的字符串转成数值型 在用pd.read_csv读数据时,将要转换数据类型的列名和类型名构成字典,传给dtype import numpy as np import pandas as pd path = 'house_data.csv' col = ['CRIM', 'ZN',

  • pandas.DataFrame删除/选取含有特定数值的行或列实例

    1.删除/选取某列含有特殊数值的行 import pandas as pd import numpy as np a=np.array([[1,2,3],[4,5,6],[7,8,9]]) df1=pd.DataFrame(a,index=['row0','row1','row2'],columns=list('ABC')) print(df1) df2=df1.copy() #删除/选取某列含有特定数值的行 #df1=df1[df1['A'].isin([1])] #df1[df1['A'].

  • 基于pandas将类别属性转化为数值属性的方法

    离散特征的编码分为两种情况: 1.离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码 2.离散特征的取值有大小的意义,比如size:[X,XL,XXL],那么就使用数值的映射{X:1,XL:2,XXL:3} 使用pandas可以很方便的对离散型特征进行one-hot编码 import pandas as pd df = pd.DataFrame([ ['green', 'M', 10.1, 'class1'], ['red', 'L', 13.5

  • 利用nodejs读取图片并将二进制数据转换成base64格式

    目录 读取图片并将二进制数据转换成base64格式 nodejs读取服务器图片,转为base64显示在网页上 读取图片并将二进制数据转换成base64格式 首先,使用nodejs进行数据读取,需要用到nodejs的fs模块进行数据读取: fs.readFile('你的资源路径','binary',function(err,data){     if(err){         console.log(err)     }else{         console.log('数据读取成功');  

  • 利用pandas进行数据清洗的方法

    目录 1.完整性 1.1 缺失值 1.2 空行 2.全面性 列数据的单位不统一 3.合理性 非ASCII字符 4.唯一性 4.1 一列有多个参数 4.2 重复数据 我们有下面的一个数据,利用其做简单的数据分析. 这是一家服装店统计的会员数据.最上面的一行是列坐标,最左侧一列是行坐标.列坐标中,第 0 列代表的是序号,第 1 列代表的会员的姓名,第 2 列代表年龄,第 3 列代表体重,第 4~6 列代表男性会员的三围尺寸,第 7~9 列代表女性会员的三围尺寸. 数据清洗规则总结为以下 4 个关键点

  • 如何利用Pandas删除某列指定值所在的行

    目录 前言 1.data.dropna() 1-1 axis确定删除存在缺失值的行或者是列 1-2 how 确定存在缺失值时,是否删除行或者列 1-3 thresh=n表示保留至少含有n个非na数值的行 1-4 subset确定要在哪些列中查找缺失值 1-5 inplace确定是否直接在原DataFrame修改 2.data.drop 2-1 labels 指定行或者列的名称 2-2 index 指定要删除的行 2-3 columns 指定要删除的列 3.实例 3-1 统计0的数量 3-2 找出

  • 利用Pandas实现对数据进行移动计算

    假设有 10 天的销售额数据,我们想每三天求一次总和,比如第五天的总和就是第三天 + 第四天 + 第五天的销售额之和,这个时候该怎么做呢? Series 对象有一个 rolling 方法,专门用来做移动计算,我们来看一下. import pandas as pd amount = pd.Series(     [100, 90, 110, 150, 110, 130, 80, 90, 100, 150]) print(amount.rolling(3).sum()) """

  • JavaScript将数据转换成整数的方法

    JavaScript提供将数值转成整数的方法parseInt,用于转换字符串数据"123",或者浮点数1.23. 复制代码 代码如下: parseInt("1");  // 1parseInt("1.2");  // 1parseInt("-1.2");  // -1parseInt(1.2);  // 1parseInt(0);  // 0parseInt("0");  // 0 但是这个parseInt

  • python时间日期函数与利用pandas进行时间序列处理详解

    python标准库包含于日期(date)和时间(time)数据的数据类型,datetime.time以及calendar模块会被经常用到. datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差. 下面我们先简单的了解下python日期和时间数据类型及工具 给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象 from datetime import datetime from datetime impo

随机推荐