基于opencv+java实现简单图形识别程序
目录
- 前言
- 方法如下
- 总结
前言
OpenCV的 全称是:Open Source Computer Vision Library。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上。它轻量级而且高效——由一系列 C 函数和少量 C++ 类 构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了 图像处理和计算机视觉方面的很多通用算法。
OpenCV用C++语言编写,它的主要接口也是C++语言,但是依然保留了大量的C语言接口。该库也有大量的Python, Java and MATLAB/OCTAVE (版本2.5)的接口。这些语言的API接口函数可以通过在线文档获得。如今也提供对于C#,Ch, Ruby的支持。
本文着重讲述opencv+java的实现程序,关于opencv的如何引入dll库等操作以及c的实现就不在这里概述了
方法如下
直接开始,首先下载opencv,引入opencv-246.jar包以及对应dll库
1.背景去除 简单案列,只适合背景单一的图像
import java.util.ArrayList; import java.util.List; import org.opencv.core.Core; import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.core.Point; import org.opencv.core.Scalar; import org.opencv.core.Size; import org.opencv.highgui.Highgui; import org.opencv.imgproc.Imgproc; /** * @Description 背景去除 简单案列,只适合背景单一的图像 * @author XPY * @date 2016年8月30日下午4:14:32 */ public class demo1 { public static void main(String[] args) { System.loadLibrary("opencv_java246"); Mat img = Highgui.imread("E:\\opencv_img\\source\\1.jpg");//读图像 Mat new_img = doBackgroundRemoval(img); Highgui.imwrite("E:\\opencv_img\\target\\1.jpg",new_img);//写图像 } private static Mat doBackgroundRemoval(Mat frame) { // init Mat hsvImg = new Mat(); List<Mat> hsvPlanes = new ArrayList<>(); Mat thresholdImg = new Mat(); int thresh_type = Imgproc.THRESH_BINARY_INV; // threshold the image with the average hue value hsvImg.create(frame.size(), CvType.CV_8U); Imgproc.cvtColor(frame, hsvImg, Imgproc.COLOR_BGR2HSV); Core.split(hsvImg, hsvPlanes); // get the average hue value of the image Scalar average = Core.mean(hsvPlanes.get(0)); double threshValue = average.val[0]; Imgproc.threshold(hsvPlanes.get(0), thresholdImg, threshValue, 179.0, thresh_type); Imgproc.blur(thresholdImg, thresholdImg, new Size(5, 5)); // dilate to fill gaps, erode to smooth edges Imgproc.dilate(thresholdImg, thresholdImg, new Mat(), new Point(-1, -1), 1); Imgproc.erode(thresholdImg, thresholdImg, new Mat(), new Point(-1, -1), 3); Imgproc.threshold(thresholdImg, thresholdImg, threshValue, 179.0, Imgproc.THRESH_BINARY); // create the new image Mat foreground = new Mat(frame.size(), CvType.CV_8UC3, new Scalar(255, 255, 255)); thresholdImg.convertTo(thresholdImg, CvType.CV_8U); frame.copyTo(foreground, thresholdImg);// 掩膜图像复制 return foreground; } }
2.边缘检测
import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.core.Size; import org.opencv.highgui.Highgui; import org.opencv.imgproc.Imgproc; /** * @Description 边缘检测 * @author XPY * @date 2016年8月30日下午5:01:01 */ public class demo2 { public static void main(String[] args) { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); Mat img = Highgui.imread("E:\\face7.jpg");//读图像 Mat new_img = doCanny(img); Highgui.imwrite("E:\\opencv_img\\target\\2.jpg",new_img);//写图像 } private static Mat doCanny(Mat frame) { // init Mat grayImage = new Mat(); Mat detectedEdges = new Mat(); double threshold = 10; // convert to grayscale Imgproc.cvtColor(frame, grayImage, Imgproc.COLOR_BGR2GRAY); // reduce noise with a 3x3 kernel Imgproc.blur(grayImage, detectedEdges, new Size(3, 3)); // canny detector, with ratio of lower:upper threshold of 3:1 Imgproc.Canny(detectedEdges, detectedEdges, threshold, threshold * 3); // using Canny's output as a mask, display the result Mat dest = new Mat(); frame.copyTo(dest, detectedEdges); return dest; } }
3.人脸检测技术 (靠边缘的和侧脸检测不准确)
import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.core.MatOfRect; import org.opencv.core.Point; import org.opencv.core.Rect; import org.opencv.core.Scalar; import org.opencv.highgui.Highgui; import org.opencv.objdetect.CascadeClassifier; /** * * @Description 人脸检测技术 (靠边缘的和侧脸检测不准确) * @author XPY * @date 2016年9月1日下午4:47:33 */ public class demo3 { public static void main(String[] args) { System.out.println("Hello, OpenCV"); // Load the native library. System.loadLibrary("opencv_java246"); new demo3().run(); } public void run() { System.out.println("\nRunning DetectFaceDemo"); System.out.println(getClass().getResource("/haarcascade_frontalface_alt2.xml").getPath()); // Create a face detector from the cascade file in the resources // directory. //CascadeClassifier faceDetector = new CascadeClassifier(getClass().getResource("haarcascade_frontalface_alt2.xml").getPath()); //Mat image = Highgui.imread(getClass().getResource("lena.png").getPath()); //注意:源程序的路径会多打印一个‘/',因此总是出现如下错误 /* * Detected 0 faces Writing faceDetection.png libpng warning: Image * width is zero in IHDR libpng warning: Image height is zero in IHDR * libpng error: Invalid IHDR data */ //因此,我们将第一个字符去掉 String xmlfilePath=getClass().getResource("/haarcascade_frontalface_alt2.xml").getPath().substring(1); CascadeClassifier faceDetector = new CascadeClassifier(xmlfilePath); Mat image = Highgui.imread("E:\\face2.jpg"); // Detect faces in the image. // MatOfRect is a special container class for Rect. MatOfRect faceDetections = new MatOfRect(); faceDetector.detectMultiScale(image, faceDetections); System.out.println(String.format("Detected %s faces", faceDetections.toArray().length)); // Draw a bounding box around each face. for (Rect rect : faceDetections.toArray()) { Core.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 255, 0)); } // Save the visualized detection. String filename = "E:\\faceDetection.png"; System.out.println(String.format("Writing %s", filename)); System.out.println(filename); Highgui.imwrite(filename, image); } }
人脸检测需要自行下载haarcascade_frontalface_alt2.xml文件
附上demo下载地址:点击这里,运行需自行引入opencv的dll文件
总结
到此这篇关于基于opencv+java实现简单图形识别程序的文章就介绍到这了,更多相关opencv+java图形识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
赞 (0)