Python中OpenCV Tutorials 20  高动态范围成像的实现步骤

目录
  • 高动态范围成像
  • 一、引言
  • 二、曝光序列
  • 三、代码演示
  • 四、解释
    • 1. 加载图像和曝光时间
    • 2. 估计相机响应
    • 3. 形成HDR图像
    • 4. 对 HDR 图像进行色调映射
    • 5. 实现曝光融合
  • 五、补充资源

高动态范围成像

一、引言

如今,大多数数字图像和成像设备每通道使用 8 位整数表示灰度,因此将设备的动态范围限制在两个数量级(实际上是 256 级),而人眼可以适应变化十个数量级的照明条件。当我们拍摄真实世界场景的照片时,明亮区域可能曝光过度,而黑暗区域可能曝光不足,因此我们无法使用单次曝光捕捉所有细节。 HDR 成像适用于每通道使用超过 8 位(通常为 32 位浮点值)的图像,允许更宽的动态范围。获取 HDR 图像的方法有很多种,但最常见的一种是使用以不同曝光值拍摄的场景照片。要结合这些曝光,了解相机的响应函数以及估计它的算法很有用。混合 HDR 图像后,必须将其转换回 8 位才能在普通显示器上查看。这个过程称为色调映射。当场景或相机的对象在镜头之间移动时,会出现额外的复杂性,因为应该配准和对齐具有不同曝光的图像。在本教程中,我们将展示如何从曝光序列中生成和显示 HDR 图像。在我们的例子中,图像已经对齐并且没有移动对象。我们还展示了一种称为曝光融合的替代方法,它可以产生低动态范围的图像。 HDR 管道的每个步骤都可以使用不同的算法来实现,因此请查看参考手册以了解所有这些。

二、曝光序列

三、代码演示

from __future__ import print_function
from __future__ import division
import cv2 as cv
import numpy as np
import argparse
import os
def cv_show(name, img):
    cv.imshow(name, img)
    cv.waitKey(0)
    cv.destroyAllWindows()
def compare(imgs):
  #  for i in range(len(imgs)):
 #       imgs[i][:,-3:-1,:] = [255,255,255]
    res = np.hstack(imgs)
    cv_show('Compare', res)
def loadExposureSeq(path):
    images = []
    times = []
    with open(os.path.join(path, 'list.txt')) as f:
        content = f.readlines()
    for line in content:
        tokens = line.split()
        images.append(cv.imread(os.path.join(path, tokens[0])))
        # 便于之后的逆CRF操作
        times.append(1 / float(tokens[1]))
    return images, np.asarray(times, dtype=np.float32)
# jupyter 难以手动输入参数,故使用绝对路径
#parser = argparse.ArgumentParser(description='Code for High Dynamic Range Imaging tutorial.')
# parser.add_argument('--input', type=str, help='Path to the directory that contains images and exposure times.')
# args = parser.parse_args()
# if not args.input:
#     parser.print_help()
#     exit(0)
# images, times = loadExposureSeq(args.input)
images, times = loadExposureSeq('exposures/')
calibrate = cv.createCalibrateDebevec()
response = calibrate.process(images, times)
merge_debevec = cv.createMergeDebevec()
hdr = merge_debevec.process(images, times, response)
tonemap = cv.createTonemap(2.2)
ldr = tonemap.process(hdr)
merge_mertens = cv.createMergeMertens()
fusion = merge_mertens.process(images)
cv.imwrite('fusion.png', fusion * 255)
cv.imwrite('ldr.png', ldr * 255)
cv.imwrite('hdr.hdr', hdr)
True

四、解释

1. 加载图像和曝光时间

images, times = loadExposureSeq('exposures/')
# 查看数据集中曝光图像个数
len(images)
16

首先我们从用户自定义文件夹中(此处我采用了教程提供的数据集并将其放置到了同目录下便于载入)载入输入图像以及其曝光时间。文件夹中需要包含图像和list.txt文本文件,其中包含了文件名称和反曝光时间

提供的图像数据集的列表如下:

memorial00.png 0.03125

memorial01.png 0.0625

...

memorial15.png 1024

2. 估计相机响应

calibrate = cv.createCalibrateDebevec()
response = calibrate.process(images, times)
  • 用法如下:

cv.createCalibrateDebevec( [, samples[, lambda_[, random]]] ) -> retval

  • 参数含义:
  • samples :number of pixel locations to use
  • lambda :smoothness term weight. Greater values produce smoother results, but can alter the response.
  • random :if true sample pixel locations are chosen at random, otherwise they form a rectangular grid.

很多 HDR 构建算法都需要了解相机响应函数(CRF)。 我们使用一种校准算法来估计所有 256 个像素值的逆 CRF

3. 形成HDR图像

merge_debevec = cv.createMergeDebevec()
# 利用逆CRF形成HDR图像
hdr = merge_debevec.process(images, times, response)
复制代码
  • 用法如下:

cv.createMergeMertens( [, contrast_weight[, saturation_weight[, exposure_weight]]] ) -> retval

  • 参数含义:
  • contrast_weight :contrast measure weight. See MergeMertens.
  • saturation_weight: saturation measure weight
  • exposure_weight :well-exposedness measure weight

我们使用 Debevec 的加权方案,使用上一项中计算的响应来构建 HDR 图像。

4. 对 HDR 图像进行色调映射

tonemap = cv.createTonemap(2.2)
ldr = tonemap.process(hdr)
cv_show('Result', ldr)
  • 用法如下: cv.createTonemap( [, gamma] ) -> retval
  • 参数含义:
  • gamma :positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma equal to 2.2f is suitable for most displays. Generally gamma > 1 brightens the image and gamma < 1 darkens it.

由于我们想在普通 LDR 显示器上看到我们的结果,我们必须将 HDR 图像映射到 8 位范围,保留大部分细节。 这是色调映射方法的主要目标。 我们使用带有双边滤波的色调映射器,并将 2.2 设置为 gamma 校正的值。

5. 实现曝光融合

merge_mertens = cv.createMergeMertens()
fusion = merge_mertens.process(images)

如果我们不需要 HDR 图像,还有另一种方法可以合并我们的曝光。 这个过程称为曝光融合,并产生不需要伽马校正的 LDR 图像。 它也不使用照片的曝光值。

compare([ldr,fusion])

左边是对HDR图像直接进行色调映射的结果,只会保留大部分细节,右边图像是使用所有输入图像序列进行图像曝光融合的结果

请注意,HDR 图像不能以一种常见的图像格式存储,因此我们将其保存为 Radiance 图像 (.hdr)。 此外,所有 HDR 成像函数都返回 [0, 1] 范围内的结果,因此我们应该将结果乘以 255。您可以尝试其他色调映射算法:cv::TonemapDrago、cv::TonemapMantiuk 和 cv::TonemapReinhard 您还可以调整 您自己的照片的 HDR 校准和色调映射方法参数。

# 修改gamma使整幅图像变亮
tonemap = cv.createTonemap(10)
ldr = tonemap.process(hdr)
cv_show('Result', ldr)

五、补充资源

  • Paul E Debevec and Jitendra Malik. Recovering high dynamic range radiance maps from photographs. In ACM SIGGRAPH 2008 classes, page 31. ACM, 2008. [57]
  • Mark A Robertson, Sean Borman, and Robert L Stevenson. Dynamic range improvement through multiple exposures. In Image Processing, 1999. ICIP 99. Proceedings. 1999 International Conference on, volume 3, pages 159–163. IEEE, 1999. [207]
  • Tom Mertens, Jan Kautz, and Frank Van Reeth. Exposure fusion. In Computer Graphics and Applications, 2007. PG'07. 15th Pacific Conference on, pages 382–390. IEEE, 2007. [170]-range_imaging
  • Recovering High Dynamic Range Radiance Maps from Photographs (webpage)www.pauldebevec.com/Research/HD…

到此这篇关于Python中OpenCV Tutorials 20  高动态范围成像的文章就介绍到这了,更多相关OpenCV高动态范围成像内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python使用OpenCV获取高动态范围成像HDR

    目录 1 背景 1.1 什么是高动态范围(HDR)成像? 1.2 高动态范围(HDR)成像如何工作? 2 代码 2.1 运行环境配置 2.2 读取图像和曝光时间 2.3 图像对齐 2.4 恢复相机响应功能 2.5 合并图像 2.6 色调映射 2.7 工程代码 1 背景 1.1 什么是高动态范围(HDR)成像? 大多数数码相机和显示器将彩色图像捕获或显示为24位矩阵.每个颜色通道有8位,一共三个通道,因此每个通道的像素值在0到255之间.换句话说,普通相机或显示器具有有限的动态范围. 然而,我们周

  • Python中OpenCV Tutorials 20  高动态范围成像的实现步骤

    目录 高动态范围成像 一.引言 二.曝光序列 三.代码演示 四.解释 1. 加载图像和曝光时间 2. 估计相机响应 3. 形成HDR图像 4. 对 HDR 图像进行色调映射 5. 实现曝光融合 五.补充资源 高动态范围成像 一.引言 如今,大多数数字图像和成像设备每通道使用 8 位整数表示灰度,因此将设备的动态范围限制在两个数量级(实际上是 256 级),而人眼可以适应变化十个数量级的照明条件.当我们拍摄真实世界场景的照片时,明亮区域可能曝光过度,而黑暗区域可能曝光不足,因此我们无法使用单次曝光

  • python中opencv支持向量机的实现

    目录 支持向量机 理论基础 SVM使用介绍 例子介绍 完整程序 支持向量机 支持向量机(Support Vector Machine, SVM)是一种二分类模型,目标是寻找一个标准(称为超平面)对样本数据进行分割,分割的原则是确保分类最优化(类别之间的间隔最大). 当数据集较小时,使用支持向量机进行分类非常有效. 支持向量机是最好的现成分类器之一,“现成”是指分类器不加修改即可直接使用. 在对原始数据分类的过程中,可能无法使用线性方法实现分割.支持向量机在分类时,把无法线性分割的数据映射到高维空

  • python中opencv K均值聚类的实现示例

    目录 K均值聚类 K均值聚类的基本步骤 K均值聚类模块 简单例子 K均值聚类 预测的是一个离散值时,做的工作就是“分类”. 预测的是一个连续值时,做的工作就是“回归”. 机器学习模型还可以将训练集中的数据划分为若干个组,每个组被称为一个“簇(cluster)”.这种学习方式被称为“聚类(clusting)”,它的重要特点是在学习过程中不需要用标签对训练样本进行标注.也就是说,学习过程能够根据现有训练集自动完成分类(聚类). 根据训练数据是否有标签,可以将学习划分为监督学习和无监督学习. K近邻.

  • 使用Python中OpenCV和深度学习进行全面嵌套边缘检测

    这篇博客将介绍如何使用OpenCV和深度学习应用全面嵌套的边缘检测.并将对图像和视频流应用全面嵌套边缘检测,然后将结果与OpenCV的标准Canny边缘检测器进行比较. 1. 效果图 愤怒的小鸟--原始图 VS Canny边缘检测图 VS HED边缘检测图 花朵--原始图 VS Canny边缘检测图 VS HED边缘检测图 视频效果图GIF 如下 2. 全面嵌套边缘检测与Canny边缘检测 2.1 Hed与Canny边缘检测对比 Holistically-Nested Edge Detectio

  • python中opencv实现图片文本倾斜校正

    本项目为python项目需要安装python及python的opencv模块:opencv_python-4.0.1-cp37-cp37m-win32.whl 和 python的矩阵运算模块:numpy. 1.第一步,安装python3.7,具体安装步骤略. 2.第二步,使用pip安装python的矩阵运算模块:numpy. python -m pip install --user numpy scipy matplotlib ipython jupyter pandas sympy nose

  • Python中OpenCV实现简单车牌字符切割

    在Jupyter Notebook上使用Python+opencv实现如下简单车牌字符切割.关于opencv库的安装可以参考:Python下opencv库的安装过程与一些问题汇总. 1.实现代码 import cv2 import numpy as np import matplotlib.pyplot as plt from PIL import Image #读取原图片 image1=cv2.imread("123456.jpg") cv2.imshow("image1&

  • python中opencv图像叠加、图像融合、按位操作的具体实现

    目录 1图像叠加 2图像融合 3按位操作 1图像叠加 可以通过OpenCV函数cv.add()或简单地通过numpy操作添加两个图像,res = img1 + img2.两个图像应该具有相同的深度和类型,或者第二个图像可以是标量值. NOTE: OpenCV添加是饱和操作,也就是有上限值,而Numpy添加是模运算. 添加两个图像时, OpenCV功能将提供更好的结果.所以总是更好地坚持OpenCV功能. 代码: import cv2 import numpy as np x = np.uint8

  • python中opencv实现文字分割的实践

    图片文字分割的时候,常用的方法有两种.一种是投影法,适用于排版工整,字间距行间距比较宽裕的图像:还有一种是用OpenCV的轮廓检测,适用于文字不规则排列的图像. 投影法 对文字图片作横向和纵向投影,即通过统计出每一行像素个数,和每一列像素个数,来分割文字. 分别在水平和垂直方向对预处理(二值化)的图像某一种像素进行统计,对于二值化图像非黑即白,我们通过对其中的白点或者黑点进行统计,根据统计结果就可以判断出每一行的上下边界以及每一列的左右边界,从而实现分割的目的. 算法步骤: 使用水平投影和垂直投

  • Python中OpenCV图像特征和harris角点检测

    目录 概念 第一步:计算一个梯度 Ix,Iy 第二步:整合矩阵,计算特征值 第三步:比较特征值的大小 第四步: 非极大值抑制,把真正的角点留下来,角点周围的过滤掉 代码实现 概念 第一步:计算一个梯度 Ix,Iy 第二步:整合矩阵,计算特征值 第三步:比较特征值的大小 第四步: 非极大值抑制,把真正的角点留下来,角点周围的过滤掉 代码实现 import cv2 import numpy as np img =cv2.imread('pie.png') print('img.shape',img.

  • python中opencv Canny边缘检测

    目录 Canny边缘检测 Canny边缘检测基础 高斯滤波去除图像噪声 计算梯度 非极大值抑制 应用双阈值确定边缘 Canny函数及使用 Canny边缘检测 Canny边缘检测是一种使用多级边缘检测算法检测边缘的方法. OpenCV提供了函数cv2.Canny()实现Canny边缘检测. Canny边缘检测基础 Canny边缘检测分为如下几个步骤: 去噪.噪声会影响边缘检测的准确性,因此首先要将噪声过滤掉. 计算梯度的幅度与方向 非极大值抑制,即适当地让边缘“变瘦” 确定边缘.使用双阈值算法确定

随机推荐