对python多线程中Lock()与RLock()锁详解

资源总是有限的,程序运行如果对同一个对象进行操作,则有可能造成资源的争用,甚至导致死锁

也可能导致读写混乱

锁提供如下方法:

1.Lock.acquire([blocking])

2.Lock.release()

3.threading.Lock() 加载线程的锁对象,是一个基本的锁对象,一次只能一个锁定,其余锁请求,需等待锁释放后才能获取

4.threading.RLock() 多重锁,在同一线程中可用被多次acquire。如果使用RLock,那么acquire和release必须成对出现,

调用了n次acquire锁请求,则必须调用n次的release才能在线程中释放锁对象

例如:

无锁:

#coding=utf8
import threading
import time

num = 0

def sum_num(i):
  global num
  time.sleep(1)
  num +=i
  print num

print '%s thread start!'%(time.ctime())

try:
  for i in range(6):
    t =threading.Thread(target=sum_num,args=(i,))
    t.start()

except KeyboardInterrupt,e:
  print "you stop the threading"

print '%s thread end!'%(time.ctime())

输出:

Sun May 28 20:54:59 2017 thread start!
Sun May 28 20:54:59 2017 thread end!
01
3
710
15

结果显示混乱

引入锁:

#coding=utf8
import threading
import time

num = 0

def sum_num(i):
  lock.acquire()
  global num
  time.sleep(1)
  num +=i
  print num
  lock.release()

print '%s thread start!'%(time.ctime())

try:
  lock=threading.Lock()
  list = []
  for i in range(6):
    t =threading.Thread(target=sum_num,args=(i,))
    list.append(t)
    t.start()

  for threadinglist in list:
    threadinglist.join()

except KeyboardInterrupt,e:
  print "you stop the threading"

print '%s thread end!'%(time.ctime())

结果:

Sun May 28 21:15:37 2017 thread start!
0
1
3
6
10
15
Sun May 28 21:15:43 2017 thread end!

其中:

lock=threading.Lock()加载锁的方法也可以换成lock=threading.RLock()

如果将上面的sum_num修改为:

  lock.acquire()
  global num
  lock.acquire()
  time.sleep(1)
  num +=i
  lock.release()
  print num
  lock.release()

那么:

lock=threading.Lock() 加载的锁,则一直处于等待中,锁等待

而lock=threading.RLock() 运行正常

以上这篇对python多线程中Lock()与RLock()锁详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python多线程同步Lock、RLock、Semaphore、Event实例

    一.多线程同步 由于CPython的python解释器在单线程模式下执行,所以导致python的多线程在很多的时候并不能很好地发挥多核cpu的资源.大部分情况都推荐使用多进程. python的多线程的同步与其他语言基本相同,主要包含: Lock & RLock :用来确保多线程多共享资源的访问. Semaphore : 用来确保一定资源多线程访问时的上限,例如资源池.  Event : 是最简单的线程间通信的方式,一个线程可以发送信号,其他的线程接收到信号后执行操作. 二.实例 1)Lock &a

  • 举例讲解Python编程中对线程锁的使用

    锁 python的内置数据结构比如列表和字典等是线程安全的,但是简单数据类型比如整数和浮点数则不是线程安全的,要这些简单数据类型的通过操作,就需要使用锁. #!/usr/bin/env python3 # coding=utf-8 import threading shared_resource_with_lock = 0 shared_resource_with_no_lock = 0 COUNT = 100000 shared_resource_lock = threading.Lock()

  • python线程中同步锁详解

    在使用多线程的应用下,如何保证线程安全,以及线程之间的同步,或者访问共享变量等问题是十分棘手的问题,也是使用多线程下面临的问题,如果处理不好,会带来较严重的后果,使用python多线程中提供Lock Rlock Semaphore Event Condition 用来保证线程之间的同步,后者保证访问共享变量的互斥问题 Lock & RLock:互斥锁 用来保证多线程访问共享变量的问题 Semaphore对象:Lock互斥锁的加强版,可以被多个线程同时拥有,而Lock只能被某一个线程同时拥有. E

  • Python多线程编程(六):可重入锁RLock

    考虑这种情况:如果一个线程遇到锁嵌套的情况该怎么办,这个嵌套是指当我一个线程在获取临界资源时,又需要再次获取. 根据这种情况,代码如下: 复制代码 代码如下: ''' Created on 2012-9-8   @author: walfred @module: thread.ThreadTest6 '''    import threading  import time    counter = 0  mutex = threading.Lock()    class MyThread(thr

  • 对python多线程中Lock()与RLock()锁详解

    资源总是有限的,程序运行如果对同一个对象进行操作,则有可能造成资源的争用,甚至导致死锁 也可能导致读写混乱 锁提供如下方法: 1.Lock.acquire([blocking]) 2.Lock.release() 3.threading.Lock() 加载线程的锁对象,是一个基本的锁对象,一次只能一个锁定,其余锁请求,需等待锁释放后才能获取 4.threading.RLock() 多重锁,在同一线程中可用被多次acquire.如果使用RLock,那么acquire和release必须成对出现,

  • python多线程之事件Event的使用详解

    前言 小伙伴a,b,c围着吃火锅,当菜上齐了,请客的主人说:开吃!,于是小伙伴一起动筷子,这种场景如何实现 Event(事件) Event(事件):事件处理的机制:全局定义了一个内置标志Flag,如果Flag值为 False,那么当程序执行 event.wait方法时就会阻塞,如果Flag值为True,那么event.wait 方法时便不再阻塞. Event其实就是一个简化版的 Condition.Event没有锁,无法使线程进入同步阻塞状态. Event() set(): 将标志设为True,

  • 对Python多线程读写文件加锁的实例详解

    Python的多线程在io方面比单线程还是有优势,但是在多线程开发时,少不了对文件的读写操作.在管理多个线程对同一文件的读写操作时,就少不了文件锁了. 使用fcntl 在linux下,python的标准库有现成的文件锁,来自于fcntl模块.这个模块提供了unix系统fcntl()和ioctl()的接口. 对于文件锁的操作,主要需要使用 fcntl.flock(fd, operation)这个函数. 其中,参数 fd 表示文件描述符:参数 operation 指定要进行的锁操作,该参数的取值有如

  • 浅谈Python Opencv中gamma变换的使用详解

    伽马变换就是用来图像增强,其提升了暗部细节,简单来说就是通过非线性变换,让图像从暴光强度的线性响应变得更接近人眼感受的响应,即将漂白(相机曝光)或过暗(曝光不足)的图片,进行矫正. 伽马变换的基本形式如下: 大于1时,对图像的灰度分布直方图具有拉伸作用(使灰度向高灰度值延展),而小于1时,对图像的灰度分布直方图具有收缩作用(是使灰度向低灰度值方向靠拢). #分道计算每个通道的直方图 img0 = cv2.imread('12.jpg') hist_b = cv2.calcHist([img0],

  • 对python 数据处理中的LabelEncoder 和 OneHotEncoder详解

    如下所示: #简单来说 LabelEncoder 是对不连续的数字或者文本进行编号 from sklearn.preprocessing import LabelEncoder le = LabelEncoder() le.fit([1,5,67,100]) le.transform([1,1,100,67,5]) 输出: array([0,0,3,2,1]) #OneHotEncoder 用于将表示分类的数据扩维: from sklearn.preprocessing import OneHo

  • python matplotlib中的subplot函数使用详解

    python里面的matplotlib.pylot是大家比较常用的,功能也还不错的一个包.基本框架比较简单,但是做一个功能完善且比较好看整洁的图,免不了要网上查找一些函数.于是,为了节省时间,可以一劳永逸.我把常用函数作了一个总结,最后写了一个例子,以后基本不用怎么改了. 一.作图流程: 1.准备数据, , 3作图, 4定制, 5保存, 6显示 1.数据可以是numpy数组,也可以是list 2创建画布: import matplotlib.pyplot as plt #figure(num=N

  • python golang中grpc 使用示例代码详解

    python 1.使用前准备,安装这三个库 pip install grpcio pip install protobuf pip install grpcio_tools 2.建立一个proto文件hello.proto // [python quickstart](https://grpc.io/docs/quickstart/python.html#run-a-grpc-application) // python -m grpc_tools.protoc --python_out=. -

  • Python Flask中Cookie和Session区别详解

    目录 前言 安装 创建虚拟环境 进入虚拟环境 安装 flask Cookie的使用 Session的使用 前言 本篇文章,阐述一下Flask中Cookie和Session 为什么要说Cookie和Session呢? 答:因为http请求是无状态的,怎么理解呢?当你访问B站时,如果你没有Cookie或者Session,B站就认为你是一个没有登录的用户.如果你有Cookie或Session,那么B站就知道你登录了,并且知道你是谁.所以可以把跟你相关的资料返回 给你两者的区别: 答:Cookie是明文

  • Python Numpy中数组的集合操作详解

    我们知道两个 set 对象之间,可以取交集.并集.差集.对称差集,举个例子: s1 = {1, 2, 3} s2 = {2, 3, 4} """ &: 交集 |: 并集  -: 差集 ^: 对称差集 """ # 以下几种方式是等价的 # 但是一般我们都会使用操作符来进行处理,因为比较方便 print(s1 & s1) print(s1.intersection(s2)) print(set.intersection(s1, s2)

  • python案例中Flask全局配置示例详解

    目录 WEB服务全局配置 Flask全局配置 before_request after_request Flask自定义中间件 WEB服务全局配置 在目前的开发过市场当中,有很多WEB服务框架,Flask只是其中之一,但是总体上来看,所有的WEB框架都是依据HTTP协议的逻辑从请求到响应设计的.固然有很多功能是独立的,但是也有一部分功能需要全局设定,比如安全校验,比如埋点日志,那么这里就用到了全局配置. 所谓的全局配置,就是在框架全局,请求前后,响应前后,设置的全局配置,比如登录校验,这个功能并

随机推荐